1,096 research outputs found

    Robust Real-Time Wide-Area Differential GPS Navigation

    Get PDF
    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users

    Coastal Altimetry and Applications

    Get PDF
    This report was prepared by Dr. Michael Anzenhofer of the Geo-Forschungs-Zentrum (GFZ) Potsdam, Germany, while visiting the Department of Civil and Environmental Engineering and Geodetic Science (CEEGS), Ohio State University, during 1997-1998. The visit was hosted by Prof. C.K. Shum of the Department of Civil and Environmental Engineering and Geodetic Science.This work was partially supported by NASA Grant No.735366, Improved Ocean Radar Altimeter and Scatterometer Data Products for Global Change Studies and Coastal Application, and by a grant from GFZ, Prof. Christoph Reigber, Director

    Fast hierarchical low-rank view factor matrices for thermal irradiance on planetary surfaces

    Full text link
    We present an algorithm for compressing the radiosity view factor model commonly used in radiation heat transfer and computer graphics. We use a format inspired by the hierarchical off-diagonal low rank format, where elements are recursively partitioned using a quadtree or octree and blocks are compressed using a sparse singular value decomposition -- the hierarchical matrix is assembled using dynamic programming. The motivating application is time-dependent thermal modeling on vast planetary surfaces, with a focus on permanently shadowed craters which receive energy through indirect irradiance. In this setting, shape models are comprised of a large number of triangular facets which conform to a rough surface. At each time step, a quadratic number of triangle-to-triangle scattered fluxes must be summed; that is, as the sun moves through the sky, we must solve the same view factor system of equations for a potentially unlimited number of time-varying righthand sides. We first conduct numerical experiments with a synthetic spherical cap-shaped crater, where the equilibrium temperature is analytically available. We also test our implementation with triangle meshes of planetary surfaces derived from digital elevation models recovered by orbiting spacecrafts. Our results indicate that the compressed view factor matrix can be assembled in quadratic time, which is comparable to the time it takes to assemble the full view matrix itself. Memory requirements during assembly are reduced by a large factor. Finally, for a range of compression tolerances, the size of the compressed view factor matrix and the speed of the resulting matrix vector product both scale linearly (as opposed to quadratically for the full matrix), resulting in orders of magnitude savings in processing time and memory space.Comment: 21 pages, 10 figure

    Smartphone picture organization: a hierarchical approach

    Get PDF
    We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains

    Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations

    Get PDF
    In this work, the reconstruction quality of an approach for neutrospheric water vapor tomography based on Slant Wet Delays (SWDs) obtained from Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) is investigated. The novelties of this approach are (1) the use of both absolute GNSS and absolute InSAR SWDs for tomography and (2) the solution of the tomographic system by means of compressive sensing (CS). The tomographic reconstruction is performed based on (i) a synthetic SWD dataset generated using wet refractivity information from the Weather Research and Forecasting (WRF) model and (ii) a real dataset using GNSS and InSAR SWDs. Thus, the validation of the achieved results focuses (i) on a comparison of the refractivity estimates with the input WRF refractivities and (ii) on radiosonde profiles. In case of the synthetic dataset, the results show that the CS approach yields a more accurate and more precise solution than least squares (LSQ). In addition, the benefit of adding synthetic InSAR SWDs into the tomographic system is analyzed. When applying CS, adding synthetic InSAR SWDs into the tomographic system improves the solution both in magnitude and in scattering. When solving the tomographic system by means of LSQ, no clear behavior is observed. In case of the real dataset, the estimated refractivities of both methodologies show a consistent behavior although the LSQ and CS solution strategies differ

    Coding of synthetic aperture radar data

    Get PDF

    Application of Soft Computing Techniques to RADAR Pulse Compression

    Get PDF
    Soft Computing is a term associated with fields characterized by the use of inexact solutions to computationally-hard tasks for which an exact solution cannot be derived in polynomial time. Almost contrary to conventional (Hard) computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation to achieve tractability, robustness and low solution cost. Effectively, it resembles the Human Mind. The Soft Computing Techniques used in this project work are Adaptive Filter Algorithms and Artificial Neural Networks. An adaptive filter is a filter that self-adjusts its transfer function according to an optimizing algorithm. The adaptive filter algorithms used in this project work are the LMS algorithm, the RLS algorithm, and a slight variation of RLS, the Modified RLS algorithm. An Artificial Neural Network (ANN) is a mathematical model or computational model that tries to simulate the structure and/or functional aspects of biological neural networks. It consists of an interconnected group of artificial neurons and processes information using a connectionist approach to computation. Several models have been designed to realize an ANN. In this project, Multi-Layer Perceptron (MLP) Network is used. The algorithm used for modeling such a network is Back-Propagation Algorithm (BPA). Through this project, there has been analyzed a possibility for using the Adaptive Filter Algorithms to determine optimum Matched Filter Coefficients and effectively designing Multi-Layer Perceptron Networks with adequate weight and bias parameters for RADAR Pulse Compression. Barker Codes are taken as system inputs for Radar Pulse Compression. In case of Adaptive Filters, a convergence rate analysis has also been performed for System Identification and in case of ANN, Function Approximation using a 1-2-1 neural network has also been dealt with. A comparison of the adaptive filter algorithms has been performed on the basis of Peak Sidelobe Ratio (PSR). Finally, SSRs are obtained using MLPs of varying neurons and hidden layers and are then compared under several criteria like Noise Performance and Doppler Tolerance
    corecore