44,216 research outputs found

    Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and Computational Analytics

    Get PDF
    Effective environmental decision-making is often challenging and complex, where final solutions frequently possess inherently subjective political and socio-economic components. Consequently, complex sustainability applications in the “real world” frequently employ computational decision-making approaches to construct solutions to problems containing numerous quantitative dimensions and considerable sources of uncertainty. This volume includes a number of such applied computational analytics papers that either create new decision-making methods or provide innovative implementations of existing methods for addressing a wide spectrum of sustainability applications, broadly defined. The disparate contributions all emphasize novel approaches of computational analytics as applied to environmental decision-making and sustainability analysis – be this on the side of optimization, simulation, modelling, computational solution procedures, visual analytics, and/or information technologies

    Decision support for firm performance by real options analytics

    Get PDF
    This paper develops a real options decision support tool for raising the performance of the firm. It shows how entrepreneurs can use our intuitive tool quickly to assess the nature and type of action required for improved performance. This exploits our estimated econometric relationship between precipitators of entrepreneurial opportunities, time until exercise, and firm performance. Our 3D chromaticity plots show how staging investments, investment time, and firm performance support entrepreneurial decisions to embed, or to expedite, investments. Speedy entrepreneurial action is securely supported with this tool, without expertise in econometric estimation or in formulae for real options valuation

    Modelling and simulating unplanned and urgent healthcare: the contribution of scenarios of future healthcare systems.

    Get PDF
    The current financial challenges being faced by the UK economy have meant that the NHS will have to make £20 billion of savings between 2010 and 2014 requiring it to be innovative about how it delivers healthcare. This paper presents the methodology of a research project that is simulating the whole healthcare system with the aim of reducing waste within urgent unscheduled care streams whilst understanding the impact of such changes on the whole system. The research is aimed at care commissioners who could use such simulation in their decision-making practice, and the paper presents the findings from early stakeholder discussions about the scope and focus of the research and the relevance of stakeholder consultation and scenarios in the development of a valid decision-support tool that is fit for purpose
    corecore