11,738 research outputs found

    Technical Report: Cooperative Multi-Target Localization With Noisy Sensors

    Full text link
    This technical report is an extended version of the paper 'Cooperative Multi-Target Localization With Noisy Sensors' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper addresses the task of searching for an unknown number of static targets within a known obstacle map using a team of mobile robots equipped with noisy, limited field-of-view sensors. Such sensors may fail to detect a subset of the visible targets or return false positive detections. These measurement sets are used to localize the targets using the Probability Hypothesis Density, or PHD, filter. Robots communicate with each other on a local peer-to-peer basis and with a server or the cloud via access points, exchanging measurements and poses to update their belief about the targets and plan future actions. The server provides a mechanism to collect and synthesize information from all robots and to share the global, albeit time-delayed, belief state to robots near access points. We design a decentralized control scheme that exploits this communication architecture and the PHD representation of the belief state. Specifically, robots move to maximize mutual information between the target set and measurements, both self-collected and those available by accessing the server, balancing local exploration with sharing knowledge across the team. Furthermore, robots coordinate their actions with other robots exploring the same local region of the environment.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    Co-Localization of Audio Sources in Images Using Binaural Features and Locally-Linear Regression

    Get PDF
    This paper addresses the problem of localizing audio sources using binaural measurements. We propose a supervised formulation that simultaneously localizes multiple sources at different locations. The approach is intrinsically efficient because, contrary to prior work, it relies neither on source separation, nor on monaural segregation. The method starts with a training stage that establishes a locally-linear Gaussian regression model between the directional coordinates of all the sources and the auditory features extracted from binaural measurements. While fixed-length wide-spectrum sounds (white noise) are used for training to reliably estimate the model parameters, we show that the testing (localization) can be extended to variable-length sparse-spectrum sounds (such as speech), thus enabling a wide range of realistic applications. Indeed, we demonstrate that the method can be used for audio-visual fusion, namely to map speech signals onto images and hence to spatially align the audio and visual modalities, thus enabling to discriminate between speaking and non-speaking faces. We release a novel corpus of real-room recordings that allow quantitative evaluation of the co-localization method in the presence of one or two sound sources. Experiments demonstrate increased accuracy and speed relative to several state-of-the-art methods.Comment: 15 pages, 8 figure

    Quantum Interaction Approach in Cognition, Artificial Intelligence and Robotics

    Full text link
    The mathematical formalism of quantum mechanics has been successfully employed in the last years to model situations in which the use of classical structures gives rise to problematical situations, and where typically quantum effects, such as 'contextuality' and 'entanglement', have been recognized. This 'Quantum Interaction Approach' is briefly reviewed in this paper focusing, in particular, on the quantum models that have been elaborated to describe how concepts combine in cognitive science, and on the ensuing identification of a quantum structure in human thought. We point out that these results provide interesting insights toward the development of a unified theory for meaning and knowledge formalization and representation. Then, we analyze the technological aspects and implications of our approach, and a particular attention is devoted to the connections with symbolic artificial intelligence, quantum computation and robotics.Comment: 10 page

    Modulating interaction times in an artificial society of robots

    Get PDF
    In a collaborative society, sharing information is advantageous for each individual as well as for the whole community. Maximizing the number of agent-to-agent interactions per time becomes an appealing behavior due to fast information spreading that maximizes the overall amount of shared information. However, if malicious agents are part of society, then the risk of interacting with one of them increases with an increasing number of interactions. In this paper, we investigate the roles of interaction rates and times (aka edge life) in artificial societies of simulated robot swarms. We adapt their social networks to form proper trust sub-networks and to contain attackers. Instead of sophisticated algorithms to build and administrate trust networks, we focus on simple control algorithms that locally adapt interaction times by changing only the robots' motion patterns. We successfully validate these algorithms in collective decision-making showing improved time to convergence and energy-efficient motion patterns, besides impeding the spread of undesired opinions
    • …
    corecore