143 research outputs found

    Intelligent evacuation management systems: A review

    Get PDF
    Crowd and evacuation management have been active areas of research and study in the recent past. Various developments continue to take place in the process of efficient evacuation of crowds in mass gatherings. This article is intended to provide a review of intelligent evacuation management systems covering the aspects of crowd monitoring, crowd disaster prediction, evacuation modelling, and evacuation path guidelines. Soft computing approaches play a vital role in the design and deployment of intelligent evacuation applications pertaining to crowd control management. While the review deals with video and nonvideo based aspects of crowd monitoring and crowd disaster prediction, evacuation techniques are reviewed via the theme of soft computing, along with a brief review on the evacuation navigation path. We believe that this review will assist researchers in developing reliable automated evacuation systems that will help in ensuring the safety of the evacuees especially during emergency evacuation scenarios

    High Rise Building Evacuation Route Model Using DIJKSTRA'S Algorithm

    Get PDF
    Evacuation of high rise building has become an issue nowadays as the modern development has increased tremendously with a very complex structure and design. The complexity and height of the building can affect the successfulness of the evacuation process, especially towards unfamiliar occupants in the building. Generally, they only know the route taken while they enter the building. Moreover, the available evacuation map provided by the building is not showing the shortest and safest path. Subsequently, they are hard to find the optimal route to escape. Furthermore, the shortest path algorithm needed additional features to produce better result. This research aims to assist the evacuees to find the shortest path in a high rise building using a shortest path algorithm. The objective is to design and develop an evacuation route using shortest path algorithm based on the evacuation map of the building. The method involves in this research starts with abstracting the original floor plan of the high rise building into CAD format. The floor plan is an important data to be used in this study, which is to design the evacuation route of the building. However, the original floor plan is visualised into 2D layout to gather the information on nodes and weights. The information then is used to generate a directed graph in order to obtain the shortest path results through the implementation of shortest path algorithm. The main algorithms involve is Dijkstra’s algorithm and then an Ant Colony Optimization algorithm is used as hybrid versions of Dijkstra’s algorithm. As a result, the evacuation route model is able to gain the shortest path and safest path consistently between Dijkstra’s algorithms and hybrid version which is Dijkstra-Ant Colony Optimization (DACO). In conclusion, based on the results, the shortest path can be implemented into a computerized evacuation map of the high rise building which can assist evacuees in pre evacuation to find the shortest and safest path to evacuate

    Metaheuristic Algorithms for Spatial Multi-Objective Decision Making

    Get PDF
    Spatial decision making is an everyday activity, common to individuals and organizations. However, recently there is an increasing interest in the importance of spatial decision-making systems, as more decision-makers with concerns about sustainability, social, economic, environmental, land use planning, and transportation issues discover the benefits of geographical information. Many spatial decision problems are regarded as optimization problems, which involve a large set of feasible alternatives, multiple conflicting objectives that are difficult and complex to solve. Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms integrated with Geographical Information Systems (GIS) are appealing to be powerful tools in these regards, yet their implementation in spatial context is still challenging. In this thesis, various metaheuristic algorithms are adopted and improved to solve complex spatial problems. Disaster management and urban planning are used as case studies of this thesis.These case studies are explored in the four papers that are part of this thesis. In paper I, four metaheuristic algorithms have been implemented on the same spatial multi-objective problem—evacuation planning, to investigate their performance and potential. The findings show that all tested algorithms were effective in solving the problem, although in general, some had higher performance, while others showed the potential of being flexible to be modified to fit better to the problem. In the same context, paper II identified the effectiveness of the Multi-objective Artificial Bee Colony (MOABC) algorithm when improved to solve the evacuation problem. In paper III, we proposed a multi-objective optimization approach for urban evacuation planning that considered three spatial objectives which were optimized using an improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved algorithms (MOABC and MOCS) proved to be efficient in solving evacuation planning when compared to their standard version and other algorithms. Moreover, Paper IV proposed an urban land-use allocation model that involved three spatial objectives and proposed an improved Non-dominated Sorting Biogeography-based Optimization algorithm (NSBBO) to solve the problem efficiently and effectively.Overall, the work in this thesis demonstrates that different metaheuristic algorithms have the potential to change the way spatial decision problems are structured and can improve the transparency and facilitate decision-makers to map solutions and interactively modify decision preferences through trade-offs between multiple objectives. Moreover, the obtained results can be used in a systematic way to develop policy recommendations. From the perspective of GIS - Multi-Criteria Decision Making (MCDM) research, the thesis contributes to spatial optimization modelling and extended knowledge on the application of metaheuristic algorithms. The insights from this thesis could also benefit the development and practical implementation of other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for tackling complex spatial multi-objective decision problems in the future

    Swarm intelligence in evacuation problems: A review

    Get PDF
    In this paper authors introduce swarm intelligence’s algorithms (ACO and PSO) to determine the optimum path during an evacuation process. Different PSO algorithms are compared when applied to an evacuation process and results reveal important aspects, as following detaile

    A Framework for Burnt Area Mapping and Evacuation Problem Using Aerial Imagery Analysis

    Get PDF
    The study aims to develop a holistic framework for maximum area coverage of a disaster region during a bushfire event. The monitoring and detection of bushfires are essential to assess the extent of damage, its direction of spread, and action to be taken for its containment. Bushfires limit human’s access to gather data to understand the ground situation. Therefore, the application of Unmanned Aerial Vehicles (UAVs) could be a suitable and technically advanced approach to grasp the dynamics of fires and take measures to mitigate them. The study proposes an optimization model for a maximal area coverage of the fire-affected region. The advanced Artificial Bee Colony (ABC) algorithm will be applied to the swarm of drones to capture images and gather data vital for enhancing disaster response. The captured images will facilitate the development of burnt area maps, locating access points to the region, estimating damages, and preventing the further spread of fire. The proposed algorithm showed optimum responses for exploration, exploitation, and estimation of the maximum height of the drones for the coverage of wildfires and it outperformed the benchmarking algorithm. The results showed that area coverage of the affected region was directly proportional to drone height. At a maximum drone height of 121 m, the area coverage was improved by 30%. These results further led to a proposed framework for bushfire relief and rescue missions. The framework is grounded on the ABC algorithm and requires the coordination of the State Emergency Services (SES) for quick and efficient disaster response

    Modelling human network behaviour using simulation and optimization tools: the need for hybridization

    Get PDF
    The inclusion of stakeholder behaviour in Operations Research / Industrial Engineering (OR/IE) models has gained much attention in recent years. Behavioural and cognitive traits of people and groups have been integrated in simulation models (mainly through agent-based approaches) as well as in optimization algorithms. However, especially the influence of relations between different actors in human networks is a broad and interdisciplinary topic that has not yet been fully investigated. This paper analyses, from an OR/IE point of view, the existing literature on behaviour-related factors in human networks. This review covers different application fields, including: supply chain management, public policies in emergency situations, and Internet-based human networks. The review reveals that the methodological approach of choice (either simulation or optimization) is highly dependent on the application area. However, an integrated approach combining simulation and optimization is rarely used. Thus, the paper proposes the hybridization of simulation with optimization as one of the best strategies to incorporate human behaviour in human networks and the resulting uncertainty, randomness, and dynamism in related OR/IE models.Peer Reviewe

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner

    An Application of Ant Colony Optimization in Industrial Training Allocation

    Get PDF
    The process of assigning a visiting university’s supervisor to visit a group of industrial training practical students in the university is currently being done manually. In order to perform such task, two constraints need to be fulfilled at any time: (1) Practical student can only be supervised by university supervisor from the same department; (2) location of the places to be visited by the visiting university’s supervisor must be as near as possible in order to optimize the travelling cost, time and budget. Using manual approach, the process can be very tedious and time consuming especially when it involved large number of practical students and lecturers. Furthermore, the optimized result is seldom achievable as not all practical student-lecturer combinations are examined. By automating the process, the tedious and time consuming process can be avoided as well as establishing optimized combinations based on the given constraints. This paper discusses on how the assignment process is automated using Ant Colony Optimization (ACO). The results are then compared with Dijkstra’s Algorithm to evaluate the ability of ACO algorithms. The algorithm design, implementation, its future direction and improvements are discussed as well
    • …
    corecore