110 research outputs found

    Characterization of bees algorithm into the Mahalanobis-Taguchi system for classification

    Get PDF
    Mahalanobis-Taguchi System (MTS) is a pattern recognition tool employing Mahalanobis Distance (MD) and Taguchi Robust Engineering philosophy to explore and exploit data in multidimensional systems. In order to improve recognition accuracy of the MTS, features that do not provide useful and beneficial information to the recognition function is removed. A matrix called Orthogonal Array (OA) to search for the useful features is utilized by MTS to accomplished the search. However, the deployment of OA as the feature selection search method is seen as ineffective. The fixed-scheme structure of the OA provides a non-heuristic search nature which leads to suboptimal solution. Therefore, it is the objective of this research to develop an algorithm utilizing Bees Algorithm (BA) to replace the OA. It will act as the alternative feature selection search strategy in order to enhance the search mechanism in a more heuristic manner. To understand the mechanism of the Bees Algorithm, the characteristics of the algorithmic nature of the algorithm is determined. Unlike other research reported in the literature, the proposed characterization framework is similar to Taguchi-sound approach because Larger the Better (LTB) type of signal-to-noise formulation is used as the algorithm’s objective function. The Smallest Position Value (SPV) discretization method is adopted by which the combinations of features are indexed in an enumeration list consisting of all possible feature combinations. The list formed a search landscape for the bee agents in exploring the potential solution. The proposed characterization framework is validated by comparing it against three different case studies, all focused on performance in terms of Signal-to-Noise Ratio gain (SNR gain), classification accuracy and computational speed against the OA. The results from the case studies showed that the characterization of the BA into the MTS framework improved the performance of the MTS particularly on the SNR gain. It recorded more than 50% improvement (on average) and nearly 4% improvement on the classification accuracy (on average) in comparison to the OA. However, the OA on average was found to be 30 times faster than the BA in terms of computational speed. Future research on improving the computational speed aspect of the BA is suggested. This study concludes that the characterization of BA into the MTS optimization methodology effectively improved the performances of the MTS, particularly with respect of the SNR gain performance and the classification accuracy when compared to the OA

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs

    Knowledge-Based Systems. Overview and Selected Examples

    Get PDF
    The Advanced Computer Applications (ACA) project builds on IIASA's traditional strength in the methodological foundations of operations research and applied systems analysis, and its rich experience in numerous application areas including the environment, technology and risk. The ACA group draws on this infrastructure and combines it with elements of AI and advanced information and computer technology to create expert systems that have practical applications. By emphasizing a directly understandable problem representation, based on symbolic simulation and dynamic color graphics, and the user interface as a key element of interactive decision support systems, models of complex processes are made understandable and available to non-technical users. Several completely externally-funded research and development projects in the field of model-based decision support and applied Artificial Intelligence (AI) are currently under way, e.g., "Expert Systems for Integrated Development: A Case Study of Shanxi Province, The People's Republic of China." This paper gives an overview of some of the expert systems that have been considered, compared or assessed during the course of our research, and a brief introduction to some of our related in-house research topics

    Technology 2002: The Third National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2002 Conference and Exposition, December 1-3, 1992, Baltimore, MD. Volume 2 features 60 papers presented during 30 concurrent sessions

    Smart Flow Control Processes in Micro Scale

    Get PDF
    In recent years, microfluidic devices with a large surface-to-volume ratio have witnessed rapid development, allowing them to be successfully utilized in many engineering applications. A smart control process has been proposed for many years, while many new innovations and enabling technologies have been developed for smart flow control, especially concerning “smart flow control” at the microscale. This Special Issue aims to highlight the current research trends related to this topic, presenting a collection of 33 papers from leading scholars in this field. Among these include studies and demonstrations of flow characteristics in pumps or valves as well as dynamic performance in roiling mill systems or jet systems to the optimal design of special components in smart control systems

    Technologies on the stand:Legal and ethical questions in neuroscience and robotics

    Get PDF
    corecore