13,916 research outputs found

    Applications of position-based coding to classical communication over quantum channels

    Get PDF
    Recently, a coding technique called position-based coding has been used to establish achievability statements for various kinds of classical communication protocols that use quantum channels. In the present paper, we apply this technique in the entanglement-assisted setting in order to establish lower bounds for error exponents, lower bounds on the second-order coding rate, and one-shot lower bounds. We also demonstrate that position-based coding can be a powerful tool for analyzing other communication settings. In particular, we reduce the quantum simultaneous decoding conjecture for entanglement-assisted or unassisted communication over a quantum multiple access channel to open questions in multiple quantum hypothesis testing. We then determine achievable rate regions for entanglement-assisted or unassisted classical communication over a quantum multiple-access channel, when using a particular quantum simultaneous decoder. The achievable rate regions given in this latter case are generally suboptimal, involving differences of Renyi-2 entropies and conditional quantum entropies.Comment: v4: 44 pages, v4 includes a simpler proof for an upper bound on one-shot entanglement-assisted capacity, also found recently and independently in arXiv:1804.0964

    Quantum Channel Capacities Per Unit Cost

    Get PDF
    Communication over a noisy channel is often conducted in a setting in which different input symbols to the channel incur a certain cost. For example, for bosonic quantum channels, the cost associated with an input state is the number of photons, which is proportional to the energy consumed. In such a setting, it is often useful to know the maximum amount of information that can be reliably transmitted per cost incurred. This is known as the capacity per unit cost. In this paper, we generalize the capacity per unit cost to various communication tasks involving a quantum channel such as classical communication, entanglement-assisted classical communication, private communication, and quantum communication. For each task, we define the corresponding capacity per unit cost and derive a formula for it analogous to that of the usual capacity. Furthermore, for the special and natural case in which there is a zero-cost state, we obtain expressions in terms of an optimized relative entropy involving the zero-cost state. For each communication task, we construct an explicit pulse-position-modulation coding scheme that achieves the capacity per unit cost. Finally, we compute capacities per unit cost for various bosonic Gaussian channels and introduce the notion of a blocklength constraint as a proposed solution to the long-standing issue of infinite capacities per unit cost. This motivates the idea of a blocklength-cost duality, on which we elaborate in depth.Comment: v3: 18 pages, 2 figure

    A hypothesis testing approach for communication over entanglement assisted compound quantum channel

    Full text link
    We study the problem of communication over a compound quantum channel in the presence of entanglement. Classically such channels are modeled as a collection of conditional probability distributions wherein neither the sender nor the receiver is aware of the channel being used for transmission, except for the fact that it belongs to this collection. We provide near optimal achievability and converse bounds for this problem in the one-shot quantum setting in terms of quantum hypothesis testing divergence. We also consider the case of informed sender, showing a one-shot achievability result that converges appropriately in the asymptotic and i.i.d. setting. Our achievability proof is similar in spirit to its classical counterpart. To arrive at our result, we use the technique of position-based decoding along with a new approach for constructing a union of two projectors, which can be of independent interest. We give another application of the union of projectors to the problem of testing composite quantum hypotheses.Comment: 21 pages, version 3. Added an application to the composite quantum hypothesis testing. Expanded introductio

    Quantum Cryptography Beyond Quantum Key Distribution

    Get PDF
    Quantum cryptography is the art and science of exploiting quantum mechanical effects in order to perform cryptographic tasks. While the most well-known example of this discipline is quantum key distribution (QKD), there exist many other applications such as quantum money, randomness generation, secure two- and multi-party computation and delegated quantum computation. Quantum cryptography also studies the limitations and challenges resulting from quantum adversaries---including the impossibility of quantum bit commitment, the difficulty of quantum rewinding and the definition of quantum security models for classical primitives. In this review article, aimed primarily at cryptographers unfamiliar with the quantum world, we survey the area of theoretical quantum cryptography, with an emphasis on the constructions and limitations beyond the realm of QKD.Comment: 45 pages, over 245 reference

    On converse bounds for classical communication over quantum channels

    Full text link
    We explore several new converse bounds for classical communication over quantum channels in both the one-shot and asymptotic regimes. First, we show that the Matthews-Wehner meta-converse bound for entanglement-assisted classical communication can be achieved by activated, no-signalling assisted codes, suitably generalizing a result for classical channels. Second, we derive a new efficiently computable meta-converse on the amount of classical information unassisted codes can transmit over a single use of a quantum channel. As applications, we provide a finite resource analysis of classical communication over quantum erasure channels, including the second-order and moderate deviation asymptotics. Third, we explore the asymptotic analogue of our new meta-converse, the Υ\Upsilon-information of the channel. We show that its regularization is an upper bound on the classical capacity, which is generally tighter than the entanglement-assisted capacity and other known efficiently computable strong converse bounds. For covariant channels we show that the Υ\Upsilon-information is a strong converse bound.Comment: v3: published version; v2: 18 pages, presentation and results improve
    • …
    corecore