604 research outputs found

    Colouring set families without monochromatic k-chains

    Full text link
    A coloured version of classic extremal problems dates back to Erd\H{o}s and Rothschild, who in 1974 asked which nn-vertex graph has the maximum number of 2-edge-colourings without monochromatic triangles. They conjectured that the answer is simply given by the largest triangle-free graph. Since then, this new class of coloured extremal problems has been extensively studied by various researchers. In this paper we pursue the Erd\H{o}s--Rothschild versions of Sperner's Theorem, the classic result in extremal set theory on the size of the largest antichain in the Boolean lattice, and Erd\H{o}s' extension to kk-chain-free families. Given a family F\mathcal{F} of subsets of [n][n], we define an (r,k)(r,k)-colouring of F\mathcal{F} to be an rr-colouring of the sets without any monochromatic kk-chains F1βŠ‚F2βŠ‚β‹―βŠ‚FkF_1 \subset F_2 \subset \dots \subset F_k. We prove that for nn sufficiently large in terms of kk, the largest kk-chain-free families also maximise the number of (2,k)(2,k)-colourings. We also show that the middle level, ([n]⌊n/2βŒ‹)\binom{[n]}{\lfloor n/2 \rfloor}, maximises the number of (3,2)(3,2)-colourings, and give asymptotic results on the maximum possible number of (r,k)(r,k)-colourings whenever r(kβˆ’1)r(k-1) is divisible by three.Comment: 30 pages, final versio

    On Verifying Complex Properties using Symbolic Shape Analysis

    Get PDF
    One of the main challenges in the verification of software systems is the analysis of unbounded data structures with dynamic memory allocation, such as linked data structures and arrays. We describe Bohne, a new analysis for verifying data structures. Bohne verifies data structure operations and shows that 1) the operations preserve data structure invariants and 2) the operations satisfy their specifications expressed in terms of changes to the set of objects stored in the data structure. During the analysis, Bohne infers loop invariants in the form of disjunctions of universally quantified Boolean combinations of formulas. To synthesize loop invariants of this form, Bohne uses a combination of decision procedures for Monadic Second-Order Logic over trees, SMT-LIB decision procedures (currently CVC Lite), and an automated reasoner within the Isabelle interactive theorem prover. This architecture shows that synthesized loop invariants can serve as a useful communication mechanism between different decision procedures. Using Bohne, we have verified operations on data structures such as linked lists with iterators and back pointers, trees with and without parent pointers, two-level skip lists, array data structures, and sorted lists. We have deployed Bohne in the Hob and Jahob data structure analysis systems, enabling us to combine Bohne with analyses of data structure clients and apply it in the context of larger programs. This report describes the Bohne algorithm as well as techniques that Bohne uses to reduce the ammount of annotations and the running time of the analysis
    • …
    corecore