25,816 research outputs found

    Fast Hierarchical Clustering and Other Applications of Dynamic Closest Pairs

    Full text link
    We develop data structures for dynamic closest pair problems with arbitrary distance functions, that do not necessarily come from any geometric structure on the objects. Based on a technique previously used by the author for Euclidean closest pairs, we show how to insert and delete objects from an n-object set, maintaining the closest pair, in O(n log^2 n) time per update and O(n) space. With quadratic space, we can instead use a quadtree-like structure to achieve an optimal time bound, O(n) per update. We apply these data structures to hierarchical clustering, greedy matching, and TSP heuristics, and discuss other potential applications in machine learning, Groebner bases, and local improvement algorithms for partition and placement problems. Experiments show our new methods to be faster in practice than previously used heuristics.Comment: 20 pages, 9 figures. A preliminary version of this paper appeared at the 9th ACM-SIAM Symp. on Discrete Algorithms, San Francisco, 1998, pp. 619-628. For source code and experimental results, see http://www.ics.uci.edu/~eppstein/projects/pairs

    Information Recovery from Pairwise Measurements

    Full text link
    A variety of information processing tasks in practice involve recovering nn objects from single-shot graph-based measurements, particularly those taken over the edges of some measurement graph G\mathcal{G}. This paper concerns the situation where each object takes value over a group of MM different values, and where one is interested to recover all these values based on observations of certain pairwise relations over G\mathcal{G}. The imperfection of measurements presents two major challenges for information recovery: 1) inaccuracy\textit{inaccuracy}: a (dominant) portion 1−p1-p of measurements are corrupted; 2) incompleteness\textit{incompleteness}: a significant fraction of pairs are unobservable, i.e. G\mathcal{G} can be highly sparse. Under a natural random outlier model, we characterize the minimax recovery rate\textit{minimax recovery rate}, that is, the critical threshold of non-corruption rate pp below which exact information recovery is infeasible. This accommodates a very general class of pairwise relations. For various homogeneous random graph models (e.g. Erdos Renyi random graphs, random geometric graphs, small world graphs), the minimax recovery rate depends almost exclusively on the edge sparsity of the measurement graph G\mathcal{G} irrespective of other graphical metrics. This fundamental limit decays with the group size MM at a square root rate before entering a connectivity-limited regime. Under the Erdos Renyi random graph, a tractable combinatorial algorithm is proposed to approach the limit for large MM (M=nΩ(1)M=n^{\Omega(1)}), while order-optimal recovery is enabled by semidefinite programs in the small MM regime. The extended (and most updated) version of this work can be found at (http://arxiv.org/abs/1504.01369).Comment: This version is no longer updated -- please find the latest version at (arXiv:1504.01369

    Introduction to Grassmann Manifolds and Quantum Computation

    Get PDF
    Geometrical aspects of quantum computing are reviewed elementarily for non-experts and/or graduate students who are interested in both Geometry and Quantum Computation. In the first half we show how to treat Grassmann manifolds which are very important examples of manifolds in Mathematics and Physics. Some of their applications to Quantum Computation and its efficiency problems are shown in the second half. An interesting current topic of Holonomic Quantum Computation is also covered. In the Appendix some related advanced topics are discussed.Comment: Latex File, 28 pages, corrected considerably in the process of refereeing. to appear in Journal of Applied Mathematic

    On the optimality of shape and data representation in the spectral domain

    Full text link
    A proof of the optimality of the eigenfunctions of the Laplace-Beltrami operator (LBO) in representing smooth functions on surfaces is provided and adapted to the field of applied shape and data analysis. It is based on the Courant-Fischer min-max principle adapted to our case. % The theorem we present supports the new trend in geometry processing of treating geometric structures by using their projection onto the leading eigenfunctions of the decomposition of the LBO. Utilisation of this result can be used for constructing numerically efficient algorithms to process shapes in their spectrum. We review a couple of applications as possible practical usage cases of the proposed optimality criteria. % We refer to a scale invariant metric, which is also invariant to bending of the manifold. This novel pseudo-metric allows constructing an LBO by which a scale invariant eigenspace on the surface is defined. We demonstrate the efficiency of an intermediate metric, defined as an interpolation between the scale invariant and the regular one, in representing geometric structures while capturing both coarse and fine details. Next, we review a numerical acceleration technique for classical scaling, a member of a family of flattening methods known as multidimensional scaling (MDS). There, the optimality is exploited to efficiently approximate all geodesic distances between pairs of points on a given surface, and thereby match and compare between almost isometric surfaces. Finally, we revisit the classical principal component analysis (PCA) definition by coupling its variational form with a Dirichlet energy on the data manifold. By pairing the PCA with the LBO we can handle cases that go beyond the scope defined by the observation set that is handled by regular PCA
    • …
    corecore