650 research outputs found

    A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation

    Get PDF
    The examined class of circuits includes voltage multipliers, current multipliers, linear V-I convertors, linear I-V convertors, current squaring circuits, and current divider circuits. Typical for these circuits is an independent control of the sum as well as the difference between two gate-source voltages. As direct use is made of the basic device characteristics, only a small number of transistors is required in the presented circuits

    Analysis of Internally Bandlimited Multistage Cubic-Term Generators for RF Receivers

    Get PDF
    Adaptive feedforward error cancellation applied to correct distortion arising from third-order nonlinearities in RF receivers requires low-noise low-power reference cubic nonidealities. Multistage cubic-term generators utilizing cascaded nonlinear operations are ideal in this regard, but the frequency response of the interstage circuitry can introduce errors into the cubing operation. In this paper, an overview of the use of cubic-term generators in receivers relative to other applications is presented. An interstage frequency response plan is presented for a receiver cubic-term generator and is shown to function for arbitrary three-signal third-order intermodulation generation. The noise of such circuits is also considered and is shown to depend on the total incoming signal power across a particular frequency band. Finally, the effects of the interstage group delay are quantified in the context of a relevant communication standard requirement

    Low Voltage Floating Gate MOS Transistor Based Four-Quadrant Multiplier

    Get PDF
    This paper presents a four-quadrant multiplier based on square-law characteristic of floating gate MOSFET (FGMOS) in saturation region. The proposed circuit uses square-difference identity and the differential voltage squarer proposed by Gupta et al. to implement the multiplication function. The proposed multiplier employs eight FGMOS transistors and two resistors only. The FGMOS implementation of the multiplier allows low voltage operation, reduced power consumption and minimum transistor count. The second order effects caused due to mobility degradation, component mismatch and temperature variations are discussed. Performance of the proposed circuit is verified at ±0.75 V in TSMC 0.18 ”m CMOS, BSIM3 and Level 49 technology by using Cadence Spectre simulator

    Investigation of charge coupled device correlation techniques

    Get PDF
    Analog Charge Transfer Devices (CTD's) offer unique advantages to signal processing systems, which often have large development costs, making it desirable to define those devices which can be developed for general system's use. Such devices are best identified and developed early to give system's designers some interchangeable subsystem blocks, not requiring additional individual development for each new signal processing system. The objective of this work is to describe a discrete analog signal processing device with a reasonably broad system use and to implement its design, fabrication, and testing

    Equalization of Third-Order Intermodulation Products in Wideband Direct Conversion Receivers

    Get PDF
    This paper reports a SAW-less direct-conversion receiver which utilizes a mixed-signal feedforward path to regenerate and adaptively cancel IM3 products, thus accomplishing system-level linearization. The receiver system performance is dominated by a custom integrated RF front end implemented in 130-nm CMOS and achieves an uncorrected out-of-band IIP3 of -7.1 dBm under the worst-case UMTS FDD Region 1 blocking specifications. Under IM3 equalization, the receiver achieves an effective IIP3 of +5.3 dBm and meets the UMTS BER sensitivity requirement with 3.7 dB of margin

    An effective AMS Top-Down Methodology Applied to the Design of a Mixed-SignalUWB System-on-Chip

    Get PDF
    The design of Ultra Wideband (UWB) mixed-signal SoC for localization applications in wireless personal area networks is currently investigated by several researchers. The complexity of the design claims for effective top-down methodologies. We propose a layered approach based on VHDL-AMS for the first design stages and on an intelligent use of a circuit-level simulator for the transistor-level phase. We apply the latter just to one block at a time and wrap it within the system-level VHDL-AMS description. This method allows to capture the impact of circuit-level design choices and non-idealities on system performance. To demonstrate the effectiveness of the methodology we show how the refinement of the design affects specific UWB system parameters such as bit-error rate and localization estimations

    Analog CMOS computational circuits

    Get PDF
    A new CMOS three transistor current squaring circuit is proposed. The versatility of the circuit is shown in three applications: an eight transistor four-quadrant current multiplier/divider circuit with a THD of less than 0.8% at an output current of 80% of the bias current, a floating input linear V-I convertor with variable transconductance and a THD of less than 0.28% at an output current of 120% of the bias current and a bandwidth of above 5 Mhz, and a four-quadrant voltage multiplier
    • 

    corecore