8,076 research outputs found

    Applications of Stochastic Ordering to Wireless Communications

    Full text link
    Stochastic orders are binary relations defined on probability distributions which capture intuitive notions like being larger or being more variable. This paper introduces stochastic ordering of instantaneous SNRs of fading channels as a tool to compare the performance of communication systems over different channels. Stochastic orders unify existing performance metrics such as ergodic capacity, and metrics based on error rate functions for commonly used modulation schemes through their relation with convex, and completely monotonic (c.m.) functions. Toward this goal, performance metrics such as instantaneous error rates of M-QAM and M-PSK modulations are shown to be c.m. functions of the instantaneous SNR, while metrics such as the instantaneous capacity are seen to have a completely monotonic derivative (c.m.d.). It is shown that the commonly used parametric fading distributions for modeling line of sight (LoS), exhibit a monotonicity in the LoS parameter with respect to the stochastic Laplace transform order. Using stochastic orders, average performance of systems involving multiple random variables are compared over different channels, even when closed form expressions for such averages are not tractable. These include diversity combining schemes, relay networks, and signal detection over fading channels with non-Gaussian additive noise, which are investigated herein. Simulations are also provided to corroborate our results.Comment: 25 pages, 10 figures, Submitted to the IEEE transactions on wireless communication

    Laplace Functional Ordering of Point Processes in Large-scale Wireless Networks

    Full text link
    Stochastic orders on point processes are partial orders which capture notions like being larger or more variable. Laplace functional ordering of point processes is a useful stochastic order for comparing spatial deployments of wireless networks. It is shown that the ordering of point processes is preserved under independent operations such as marking, thinning, clustering, superposition, and random translation. Laplace functional ordering can be used to establish comparisons of several performance metrics such as coverage probability, achievable rate, and resource allocation even when closed form expressions of such metrics are unavailable. Applications in several network scenarios are also provided where tradeoffs between coverage and interference as well as fairness and peakyness are studied. Monte-Carlo simulations are used to supplement our analytical results.Comment: 30 pages, 5 figures, Submitted to Hindawi Wireless Communications and Mobile Computin

    Some stochastic inequalities for weighted sums

    Full text link
    We compare weighted sums of i.i.d. positive random variables according to the usual stochastic order. The main inequalities are derived using majorization techniques under certain log-concavity assumptions. Specifically, let YiY_i be i.i.d. random variables on R+\mathbf{R}_+. Assuming that logYi\log Y_i has a log-concave density, we show that aiYi\sum a_iY_i is stochastically smaller than biYi\sum b_iY_i, if (loga1,...,logan)(\log a_1,...,\log a_n) is majorized by (logb1,...,logbn)(\log b_1,...,\log b_n). On the other hand, assuming that YipY_i^p has a log-concave density for some p>1p>1, we show that aiYi\sum a_iY_i is stochastically larger than biYi\sum b_iY_i, if (a1q,...,anq)(a_1^q,...,a_n^q) is majorized by (b1q,...,bnq)(b_1^q,...,b_n^q), where p1+q1=1p^{-1}+q^{-1}=1. These unify several stochastic ordering results for specific distributions. In particular, a conjecture of Hitczenko [Sankhy\={a} A 60 (1998) 171--175] on Weibull variables is proved. Potential applications in reliability and wireless communications are mentioned.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ302 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Directionally Convex Ordering of Random Measures, Shot Noise Fields and Some Applications to Wireless Communications

    Get PDF
    Directionally convex (dcxdcx) ordering is a tool for comparison of dependence structure of random vectors that also takes into account the variability of the marginal distributions. When extended to random fields it concerns comparison of all finite dimensional distributions. Viewing locally finite measures as non-negative fields of measure-values indexed by the bounded Borel subsets of the space, in this paper we formulate and study the dcxdcx ordering of random measures on locally compact spaces. We show that the dcxdcx order is preserved under some of the natural operations considered on random measures and point processes, such as deterministic displacement of points, independent superposition and thinning as well as independent, identically distributed marking. Further operations such as position dependent marking and displacement of points though do not preserve the dcxdcx order on all point processes, are shown to preserve the order on Cox point processes. We also examine the impact of dcxdcx order on the second moment properties, in particular on clustering and on Palm distributions. Comparisons of Ripley's functions, pair correlation functions as well as examples seem to indicate that point processes higher in dcxdcx order cluster more. As the main result, we show that non-negative integral shot-noise fields with respect to dcxdcx ordered random measures inherit this ordering from the measures. Numerous applications of this result are shown, in particular to comparison of various Cox processes and some performance measures of wireless networks, in both of which shot-noise fields appear as key ingredients. We also mention a few pertinent open questions.Comment: Accepted in Advances in Applied Probability. Propn. 3.2 strengthened and as a consequence Cor 6.1,6.2,6.

    Large-Scale MIMO versus Network MIMO for Multicell Interference Mitigation

    Full text link
    This paper compares two important downlink multicell interference mitigation techniques, namely, large-scale (LS) multiple-input multiple-output (MIMO) and network MIMO. We consider a cooperative wireless cellular system operating in time-division duplex (TDD) mode, wherein each cooperating cluster includes BB base-stations (BSs), each equipped with multiple antennas and scheduling KK single-antenna users. In an LS-MIMO system, each BS employs BMBM antennas not only to serve its scheduled users, but also to null out interference caused to the other users within the cooperating cluster using zero-forcing (ZF) beamforming. In a network MIMO system, each BS is equipped with only MM antennas, but interference cancellation is realized by data and channel state information exchange over the backhaul links and joint downlink transmission using ZF beamforming. Both systems are able to completely eliminate intra-cluster interference and to provide the same number of spatial degrees of freedom per user. Assuming the uplink-downlink channel reciprocity provided by TDD, both systems are subject to identical channel acquisition overhead during the uplink pilot transmission stage. Further, the available sum power at each cluster is fixed and assumed to be equally distributed across the downlink beams in both systems. Building upon the channel distribution functions and using tools from stochastic ordering, this paper shows, however, that from a performance point of view, users experience better quality of service, averaged over small-scale fading, under an LS-MIMO system than a network MIMO system. Numerical simulations for a multicell network reveal that this conclusion also holds true with regularized ZF beamforming scheme. Hence, given the likely lower cost of adding excess number of antennas at each BS, LS-MIMO could be the preferred route toward interference mitigation in cellular networks.Comment: 13 pages, 7 figures; IEEE Journal of Selected Topics in Signal Processing, Special Issue on Signal Processing for Large-Scale MIMO Communication
    corecore