104 research outputs found

    Hybrid GMR Sensor Detecting 950 pT/sqrt(Hz) at 1 Hz and Room Temperature.

    Get PDF
    Advances in the magnetic sensing technology have been driven by the increasing demand for the capability of measuring ultrasensitive magnetic fields. Among other emerging applications, the detection of magnetic fields in the picotesla range is crucial for biomedical applications. In this work Picosense reports a millimeter-scale, low-power hybrid magnetoresistive-piezoelectric magnetometer with subnanotesla sensitivity at low frequency. Through an innovative noise-cancelation mechanism, the 1/f noise in the MR sensors is surpassed by the mechanical modulation of the external magnetic fields in the high frequency regime. A modulation efficiency of 13% was obtained enabling a final device's sensitivity of ~950 pT/Hz1/2 at 1 Hz. This hybrid device proved to be capable of measuring biomagnetic signals generated in the heart in an unshielded environment. This result paves the way for the development of a portable, contactless, low-cost and low-power magnetocardiography device

    Magnetic components and microfluidics optimization on a Lab-on-a-chip platform

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas), Universidade de Lisboa, Faculdade de Ciências, 2017Desde 1934, quando Moldovan criou o primeiro instrumento que poderia ser descrito como um citómetro de fluxo, este equipamento tornou-se um importante componente em várias especialidades dentro do laboratório clínico para o diagnóstico, prognóstico e monitorização de um número incontável de doenças. Esta tecnologia biofísica suspende entidades biológicas num fluxo de fluido, sinalizando-as usando reconhecimento biomolecular, para depois as detetar através de um aparelho de detecção eletrónica. Com o crescimento das técnicas de fabricação de semicondutores e microfluídos, foram e continuam a ser feitas muitas tentativas de criar citómetros de fluxo do tipo Lab-on-a-Chip (LOC), o que certamente irá afastar os equipamentos usados hoje me dia nos laboratórios por equipamentos usados in situ de custo e tamanho reduzidos, portáteis e sem necessidade de pessoal especializado. Após uma revisão bibliográfica das técnicas e princípios de funcionamento dos equipamentos já existentes foi possível perceber que a utilização de partículas magnéticas (PM) pode ter várias vantagens quando comparadas com o uso convencional de deteção por fluorescência, removendo assim a necessidade de integrar e alinhar componentes ópticos, permitindo uma medição direta e a construção de um citómetro de fluxo LOC com preparação, separação e deteção de amostras totalmente magnético. No INESC-MN foi feito um protótipo que permite a deteção de um tipo de PMs em tempo real a velocidades da ordem de cm/s usando sensores magnetoresistivos integrados em canais microfluídicos mas a primeira demonstração desta técnica para aplicações de citómetro foi realizada através da detecção de células Kg1-a marcadas com PMs de 50 nm que passaram, através de um canal microfluídico, sobre 3 sensores magnetoresistivos demonstrando que, para amostras de elevada concentração, pode ter a mesma eficiência que um hemocitómetro, mas com menor erro. Tendo como ambição um dispositivo LOC capaz de contar várias entidades biológicas na mesma amostra, um módulo de contagem com vários canais paralelos é necessário. Nesse sentido, foi projetado um novo chip com 4 colunas separadas por 3 mm, cada uma com 7 sensores do tipo válvula de spin (SV) com uma área de deteção de 100x4 μm2 distanciados 150 μm uns dos outros. Os sensores são abordados individualmente por uma linha de corrente de alumínio de 300 nm e passivados com 300 nm de nitreto de silicio. Alinhados com as colunas de sensores, 4 canais de polydimethylsiloxane (PDMS) com uma secção de 20 μm de altura e 100 μm de largura foram irreversivelmente colados ao chip por ultravioleta-ozono (UVO) criando o canal onde a amostra irá fluir. Para que as PMs sinalizem a sua passagem é necessário colocá-las sob um campo magnético forte o suficiente para induzir a sua magnetização e para que, consequentemente, as PMs emanem um campo marginal significativo. Aproveitando a insensibilidade das SVs às componentes perpendiculares ao seu plano (xy), aplica-se um campo magnético nesse sentido (z) para magnetizar as partículas. As PMs ao passarem sobre o sensor geraram um sinal bipolar devido ao campo marginal criado pela sua magnetização perpendicular. Como é apresentado na simulação do sinal, a amplitude do mesmo depende apenas da altura da partícula em relação ao sensor e da magnetização das mesmas, idealmente, uma saturação da magnetização das partículas e o máximo de proximidade aos sensores geraria a maior amplitude possível. O campo magnético perpendicular foi criado usando um magnete de neodímio posicionado sob a placa de circuito impresso (PCB), onde o chip do citómetro é colado e as ligações entre o chip e a PCB soldadas por ultrassons com fio de alumínio. Na abordagem usada em Loureiro et al., 2011, um magnete de 20 mm x 10 mm x 1 mm foi simplesmente colado sob a PCB, mas devido aos campos magnéticos serem sempre fechados as componentes x e y criam desvios nas curvas de transferência dos sensores deixando apenas 1 ou 2 sensores de uma coluna do chip operacionais. Numa abordagem seguinte foi usado um magnete 20 mm x 20 mm x 3 mm distanciado 2 cm abaixo da PCB, isto tornou as curvas de transferência dos sensores adequadas para medição, mas fez com que a componente z do campo magnético não fosse grande o suficiente para que as PMs emanassem um campo magnético suficientemente forte. Percebendo as falhas de cada uma das configurações anteriores, foram feitas simulações do campo magnético que iria influenciar o chip originado por magnetes de vários tamanhos a várias distancias para perceber qual conseguiria fornecer uma maior área em que as componentes x e y fossem menores que 10 Oe e em que a componente z fosse de pelo menos 1 kOe. Através das simulações foi concluído que o magnete de 20 mm x 10 mm x 1 mm o mais próximo possível do chip seria a melhor solução, mas que um alinhamento preciso seria necessário. Para esse fim, foi fabricado numa fresadora um sistema de alinhamento em PMMA. Para que o alinhamento fosse o correto foram feitos 4 furos de alinhamento no sistema de PMMA e na PCB e para reduzir a distancia ao máximo foi feita uma bolsa na PCB da mesma área que o chip deixando a distancia do magnete aos sensores de 1 mm (0.3 mm de PCB + 0.7 mm de substrato de silício). Com isto, o alinhamento em x foi conseguido, mas para alinhar em y foi criado um trilho no sistema de PMMA onde o magnete pudesse deslizar, controlando-o pela rotação de um parafuso com passo de 0.5 mm. Para colocar o magnete na posição ideal, foi medida consecutivamente a curva de transferência do 4º sensor de uma das colunas, num campo magnético de -141 Oe a 141 Oe, até que este tivesse um campo de acoplamento efectivo (Hf) de aproximadamente 0 Oe, o que significa que a curva de transferência estaria perfeitamente centrada em zero e criaria um sinal bipolar perfeito. Após o alinhamento e posicionamento do magnete, todos os sensores foram caracterizados e, nesses resultados, podemos ver perfeitamente o efeito das componentes x e y do magnete. Com o lado longo do magnete paralelo ao lado longo das SVs e alinhado de forma que o Hf fosse o mais próximo de 0 Oe no 4º sensor de uma coluna, percebemos que a componente x (lado longo) do campo magnético criado pelo magnete tem efeitos na sensibilidade dos sensores fazendo com que esta caia à medida que nos afastamos do centro do magnete. Enquanto que a componente y tem efeitos sobre o Hf dos sensores tornando-o mais positivo à medida que medimos a 3ª, 2ª e 1ª linha de sensores e tornando-o mais negativo quando medimos a 5ª, 6ª e 7ª linha. São também apresentadas simulações dos canais microfluídicos para perceber como a velocidade das partículas afeta o sinal e qual a velocidade máxima permitida para que placa de aquisição eletrónica seja capaz de o detetar. Com estas conclusões, um novo chip foi desenhado e fabricado. Neste novo chip a distância entre as colunas de SVs foi reduzida para apenas 1 mm, o que obrigou também à alteração dos canais microfluídicos, ao tamanho do chip e da estrutura de PDMS. Também são apresentadas simulações que mostram que se um segundo magnete, alinhado com o primeiro, for colocado sobre os canais microfluídicos poderá melhorar a magnetização e a homogeneidade do campo, o que permitirá que os 4 canais tenham a mesma sensibilidade e um desvio padrão de Hf menor. Todos os antecedentes teóricos, os métodos de microfabricação e técnicas de caracterização usados são apresentados e descritos.The diagnosis, prognosis and monitoring of diseases serves for the only purpose of preserving and improving life. Being this the greatest objective of the human kind, since ever that efforts have been made to better our ways to do that. One of those, a very important component in several specialties within the clinical laboratory is the flow cytometer, a biophysical technology which uses biomolecular recognition to sort and count biological entities by suspending them in a stream of fluid and detecting them through an electronic detection apparatus. The improvement of the semiconductor and microfluidic fabrication techniques have created the chance to bring the expensive, specialized and bulky equipment out of the laboratories and generate new machines able of having the same efficiency but with smaller price, size, allowing portability and removing the need for specialized personnel. This is the concept behind the next generation of in pointof- care apparatus, the La-on-a-Chip (LOC). At INESC-MN it is understood the potential that magnetic particles (MP) have in a LOC flow cytometer and as such a real-time detection of single magnetic particles magnetoresistive based cytometer was prototyped. Demonstration of this technique for cytometer applications was accomplished by indicating that for high concentration samples it can have the same efficiency as the hemocytometer method but with lesser error. This thesis has as objective the optimization of the magnetic and microfluidic components of a LOC to allow the parallelization of measurements and enabling the real-time measurement of different particles at the same time. For this purpose, a bibliographic review of the theoretical backgrounds, of the fabrication and characterization techniques, of the different detecting principles and of the already existing magnetoresistive counting modules was made to get a deeper understanding of the optimization possibilities. The present work describes the above-mentioned platform for dynamic detection of magnetic labels with a magnetoresistive based flow cytometer, where a permanent magnet is used to magnetize the labels enabling them to trigger the sensor. Several simulations of the magnetic fields created by the permanent magnet and the microfluidic channels were done and analyzed in order to characterize the MPs signal, understand which would be the best positioning of these components and which fluid velocities would be in the range of the electronic read-out capabilities. This study led to the fabrication of a micromachined polymethylmethacrylate (PMMA) alignment system to correctly position the permanent magnet under the cytometer’s chip. This made the control over the magnet’s positioning more sensible and thus reducing the influence of its unwanted magnetic components on the chip. The approximation of the magnet to the chip enhanced the signal by optimizing the MPs magnetization and consequently the signal amplitude, the precise alignment corrected the sensors response by improving its sensitivity and removing them from saturation states. Through this new setup all the sensors in the chip became operational. Finally, using the several techniques of microfabrication also describe in this thesis, a new chip was designed and fabricated to improve even more the sensors sensitivity and consequently augment the number of the cytometer’s counting channels

    Magnetic biosensors: modelling and simulation

    Get PDF
    In the past few years, magnetoelectronics has emerged as a promising new platform technology in various biosensors for detection, identification, localisation and manipulation of a wide spectrum of biological, physical and chemical agents. The methods are based on the exposure of the magnetic field of a magnetically labelled biomolecule interacting with a complementary biomolecule bound to a magnetic field sensor. This Review presents various schemes of magnetic biosensor techniques from both simulation and modelling as well as analytical and numerical analysis points of view, and the performance variations under magnetic fields at steady and nonstationary states. This is followed by magnetic sensors modelling and simulations using advanced Multiphysics modelling software (e.g. Finite Element Method (FEM) etc.) and home-made developed tools. Furthermore, outlook and future directions of modelling and simulations of magnetic biosensors in different technologies and materials are critically discussed

    Portable lab-on-chip platform for bovine mastitis diagnosis in raw milk

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica , apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015As medidas de prevenção e controlo da mastite bovina consistem em boas práticas de gestão aliadas à administração de antibióticos. Os conceitos actuais para uma utilização prudente de antibióticos e preocupações a nível de saúde pública têm vindo a reforçar a necessidade de um diagnóstico adequado e atempado. Geralmente, a mastite é detectada com base em sinais clínicos evidentes de condições anormais do leite e / ou do úbere das vacas ou por testes que indicam uma reacção inflamatória. O teste Califórnia Mastite, consiste na contagem de células somáticas e kits relativamente baratos de bio marcadores estão disponíveis para o efeito, mas estes apenas fornecem informações sobre a presença / ausência de inflamação. Nos últimos anos, a tecnologia de Lab-on-Chip teve grandes desenvolvimentos, apresentando inúmeras vantagens relativamente aos métodos tradicionais de detecção de biomoléculas: maior sensibilidade, uma resposta mais rápida, recurso a pequenas quantidades de reagentes, redução do tamanho dos dispositivos, fácil utilização e custos acessíveis. Com o crescente interesse da medicina, indústria farmacêutica, biotecnologia e controlo ambiental, a tendência será deslocar os laboratórios para mais próximo dos clientes, através desta tecnologia também designada Point-of-Care (POC). Paralelamente, a integração da tecnologia biológica em aplicações de engenharia alimentar tem tido particular interesse na última década. A identificação precoce dos agentes patogénicos causadores da mastite bovina tem uma grande importância para a implementação de medidas de controlo adequadas, reduzindo o risco de infecções crónicas e permitindo orientar a terapêutica antimicrobiana a ser prescrita. A rápida identificação dos agentes patogénicos, como Staphylococcus spp. e Streptococcus spp. e, entre estes, a discriminação entre os principais agentes contagiosos Staphylococcus aureus e Streptococcus agalactiae, irá contribuir para um decréscimo dos danos económicos e de saúde pública consequentes da mastite bovina. Apesar dos sistemas de citometria convencional fornecerem resultados rápidos e fiáveis, estes continuam a ser volumosos, o que dificulta a sua portabilidade, além de apresentarem custos relativamente elevados e serem de utilização complexa. Por seu lado, os sensores magnetoresistivos são micro fabricados, podem ser integrados em canais microfluídicos e conseguem detectar células marcadas magneticamente. Os sensores magnetoresistivos utilizados neste trabalho são designados por Spin-Valve, sendo constituídos por uma camada de metal não magnético entre duas camadas de metais magnéticos. Uma das camadas magnéticas apresenta uma magnetização fixa, devido a uma camada antiferromagnética adjacente que lhe fixa a magnetização, enquanto a magnetização da outra camada se encontra livre para rodar. Esta dissertação pretende desenvolver uma plataforma portátil que integra um magnete permanente como fonte de magnetização, vinte e oito sensores magnetoresistivos e microfluídica, tornando possível a detecção e quantificação, de forma dinâmica e em tempo real, de partículas magnéticas e células marcadas magneticamente, utilizando vários sensores. Para tal, utilizou-se como ponto de partida um protótipo já existente no INESC-MN, que embora funcional, apresentava limitações na integração do biochip com a fonte de magnetização das nanopartículas, neste caso um magnete permanente. Como as Spin-Valves são apenas sensíveis a uma direcção no plano, se bem alinhadas na zona de homogeneidade dos campos perpendiculares criados pelo magnete, este não afecta a sensibilidade dos sensores. No entanto, uma pequena inclinação do magnete pode criar componentes de campo magnético no plano do sensor e, por conseguinte, afectar a sua sensibilidade. O magnete utilizado neste trabalho tem dimensões 20x20x3mm3 e um campo magnético residual de 1.2-1.3T. O sistema de microfluídica é composto por quatro canais lineares e individuais com 50 μm de altura, 100 μm de largura e 1 cm de comprimento, alinhados com cada conjunto de sensores. O chip e os microcanais são montados face-a-face e selados através de um processo químico, sendo depois montados e soldados num circuito impresso. Neste caso particular, o biossensor é desenhado para ser capaz de detectar e quantificar pequenas variações de campo magnético causadas pela presença de marcadores superparamagnéticos que são funcionalizados com anticorpos para proteínas de parede celular específicas que estão presentes na superfície das células de interesse. As partículas superparamagnéticas são muito utilizadas neste tipo de aplicações pelo facto de, na ausência de campo magnético externo, apresentarem magnetização nula – estão num estado superparamagnético. Quando um campo magnético externo é aplicado, provoca a magnetização destas partículas conduzindo-as a um estado paramagnético. Uma partícula magnetizada verticalmente, ao fluir no microcanal, gera um campo variável sobre o sensor. Como resultado, um pico bipolar é a assinatura da passagem de uma partícula perpendicularmente magnetizada sobre o sensor. De forma a conseguir obter uma plataforma com as características identificadas acima, foram combinados vários componentes numa única plataforma, através de um processo faseado que incluiu: i) A microfabricação de sensores magnetoresistivos, através de técnicas de fotolitografia, etching e lift-off; ii) A fabricação de um sistema de microfluidica em PDMS; iii) A integração do chip com os microcanais de PDMS através de um processo de ligação químico; iv) desenvolver um estudo sobre os efeitos de campos magnéticos externos sobre os sensores magnetoresistivos devido à presença de magnetes permanentes; v) O desenvolvimento de um módulo com um sensor de efeito de hall, que integrado numa plataforma de scanning permitisse quantificar os campos perpendiculares e longitudinais de magnetes; vi) a optimização do design do biochip de acordo com os dados obtidos; vii) O desenvolvimento de uma plataforma de suporte para a combinação do biochip com o magnete permanente; viii) A medição do momento magnético de um conjunto de partículas magnéticas com diferentes dimensões; ix) A validação experimental da eficiência do magnete permanente na magnetização de nanopartículas magnéticas, através de ensaios experimentais de detecção de nanopartículas de diferentes dimensões. x) O desenvolvimento de um programa de análise e contagem de eventos magnéticos utilizando o software Matlab®; xi) A avaliação experimental da detecção de células marcadas com partículas magnéticas. As medições experimentais foram realizadas utilizando uma plataforma electrónica desenvolvida pelo INESC-ID, há dois anos por um aluno de doutoramento, mostraram que a plataforma já optimizada permite a detecção de nanopartículas magnéticas e células marcadas magneticamente utilizando vários sensores magnetoresistivos, o que não era possível no protótipo anterior. Cinco tipos de partículas magnéticas, com dimensões entre os 2800 nm e os 50 nm, foram testadas nos vários canais. Foram observados picos correspondentes à passagem de partículas magnéticas em todas as amostras, excepto para as partículas com dimensões de 80 nm e 50 nm. Face a estes resultados conclui-se que, provavelmente: - Partículas de menores dimensões não apresentam tendência para formar aglomerados e, partículas individualizadas não têm momento magnético suficiente para serem detectadas; - Ou que a magnetização das partículas pelo magnete permanente é demasiado pequena para induzir um momento magnético significativo nas mesmas. Contudo, como neste caso é importante diminuir a probabilidade de ocorrência de falsos positivos, é relevante que partículas magnéticas que não estejam ligadas às moléculas de interesse não sejam detectadas pelo sensor. Deste modo, determinou-se que, para este sensor, as partículas de 80 nm ou 50 nm são as mais indicadas. Para validação da detecção de células foram realizadas experiências usando amostras de leite com Staphyloccocus spp. cedidas por uma colega do INESC-MN que está a desenvolver o seu trabalho de doutoramento em plataformas portáteis para análises ao leite. Estes testes com amostras biológicas foram realizados no INESC-MN, utilizando culturas de bactérias e protocolos de funcionalização e marcação magnética previamente desenvolvidos no Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA). As células foram marcadas magneticamente com partículas de 50 nm funcionalizadas com o anticorpo monoclonal anti-Staphyloccocus spp. e introduzidas no biochip para os testes de aquisição. Nesta fase foram utilizadas amostras de 500 μL contendo 10000 ufc e 8 x 108 partículas magnéticas funcionalizadas. Foram detectados picos, o que indica a capacidade desta plataforma para a detecção magnética de células marcadas. Para além disso, com o programa de contagem foi possível quantificar o número de eventos magnéticos ocorridos, tendo sido detectados 6063, para um número de colónias de 10000. Os resultados obtidos são bastante promissores, no entanto são necessários ainda estudos futuros para que este citómetro possa quantificar com maior precisão. Nomeadamente, um dos objectivos seria a medição realizada por vários sensores em simultâneo, de forma a obterem-se resultados mais confiáveis e precisos. Para tal, optimizações ao nível da aquisição do sinal, mais propriamente ao nível da plataforma electrónica de aquisição serão necessárias para que seja possível a medição com sensores em paralelo.Over the past decade, the drawbacks of conventional flow cytometers have encouraged efforts in microfabrication technologies and advanced microfluidics systems. Biosensor technology has been in exponentially development as it presents huge advantages when in comparison to traditional detection methods of biomolecules, such as high sensitivity, rapid response and small amount of reagents. Unlike external fluorescent/optical detectors, magnetoresistive (MR) sensors are micro-fabricated, can be integrated within microfluidic channels and can detect magnetically labelled biomolecules. Bovine mastitis is an economic burden for dairy farmers and control measures to prevent mastitis are crucial for dairy company sustainability. The present work describes a platform for dynamic mastitis diagnosis through detection of magnetically labelled cells with a magnetoresistive based cell cytometer, where a permanent magnet is used as magnetic source. A study about the effects of the magnetic fields over the MR sensors was developed in order to be possible to design and engineer a platform integrating the permanent magnet with the chip in such a way that the magnetic fields did not affect the MR sensors behaviour. Overall, assays were performed involving magnetic nanoparticles (MNP) and cells labelled with MNP. These assays were performed with a platform mentioned above, containing a permanent magnet assembled with the chip which was integrated with an electronic platform from INESC-ID, allowing signal acquisition from magnetized nanoparticles. In a very preliminary stage, magnetic particles between 2800 nm and 50 nm were tested flowing through a 100 μm wide, 50 μm high microchannel, with speeds around 50 μL/min being detected. Bipolar and unipolar signals with average amplitude of 15 μV – ~250 μV were observed corresponding to magnetic events. A home-made program to count magnetic events was developed in Matlab®. In particular it is presented an example for the validation of the platform as a magnetic counter that identifies and quantifies Staphylococcus spp. cells magnetically labelled with 50nm particles in a milk sample. In assays using 500 μL of milk sample, cells were detected with signal amplitude of 30 μV – ~200 μV

    Planar Hall Sensor for Influenza Immunoassay

    Get PDF

    Magnetic Field Sensors Based on Giant Magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing

    Get PDF
    The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications

    Non-Destructive Techniques Based on Eddy Current Testing

    Get PDF
    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future

    Magnetoresistance and magneto-plasmonic sensors for the detection of cancer biomarkers : A bibliometric analysis and recent advances

    Get PDF
    The conventional approaches to diagnosing cancer are expensive, often involve exposure to radiation, and struggle to identify early-stage lung cancer. As a result, the five-year survival rate is significantly reduced. Fortunately, promising alternatives using magnetoresistance (MR) and magneto-plasmonic sensors have emerged for swiftly, accurately, and inexpensively detecting cancer in its initial phases. These sensor technologies offer numerous advantages over their counterparts, such as minimal background noise, immunity to environmental influences, compatibility with nanofabrication methods, ability to detect multiple substances simultaneously, straightforward integration, high specificity, distinctive identifying capabilities, real-time monitoring, stability, label-free detection, and remarkable sensitivity for detecting individual molecules. Nevertheless, since the use of these techniques for cancer biomarker detection is relatively new, it is essential to conduct a bibliometric analysis and review recent literature to offer guidance to both early-career and established researchers in this domain. Consequently, this study performs a scientometric evaluation of the literature related to cancer biomarker detection using MR and magneto-plasmonic methods. The objective is to pinpoint current preferred techniques and challenges by examining statistics such as publication numbers, authors, countries, journals, and research interests. Furthermore, the paper also presents the latest advancements in MR and magneto-plasmonic sensors for cancer biomarker detection, with a focus on the last decade. In addition, an overview of the ongoing research in the field of MR and magneto-plasmonic sensors for detecting cancer biomarkers is highlighted. Finally, a summary on the level of current research including the significant accomplishments, challenges, and outlooks of MR and magneto-plasmonic sensors for the detection of cancer biomarkers are highlighted
    corecore