12,660 research outputs found

    A taxonomy for emergency service station location problem

    Get PDF
    The emergency service station (ESS) location problem has been widely studied in the literature since 1970s. There has been a growing interest in the subject especially after 1990s. Various models with different objective functions and constraints have been proposed in the academic literature and efficient solution techniques have been developed to provide good solutions in reasonable times. However, there is not any study that systematically classifies different problem types and methodologies to address them. This paper presents a taxonomic framework for the ESS location problem using an operations research perspective. In this framework, we basically consider the type of the emergency, the objective function, constraints, model assumptions, modeling, and solution techniques. We also analyze a variety of papers related to the literature in order to demonstrate the effectiveness of the taxonomy and to get insights for possible research directions

    Dynamic temporary blood facility location-allocation during and post-disaster periods

    Get PDF
    The key objective of this study is to develop a tool (hybridization or integration of different techniques) for locating the temporary blood banks during and post-disaster conditions that could serve the hospitals with minimum response time. We have used temporary blood centers, which must be located in such a way that it is able to serve the demand of hospitals in nearby region within a shorter duration. We are locating the temporary blood centres for which we are minimizing the maximum distance with hospitals. We have used Tabu search heuristic method to calculate the optimal number of temporary blood centres considering cost components. In addition, we employ Bayesian belief network to prioritize the factors for locating the temporary blood facilities. Workability of our model and methodology is illustrated using a case study including blood centres and hospitals surrounding Jamshedpur city. Our results shows that at-least 6 temporary blood facilities are required to satisfy the demand of blood during and post-disaster periods in Jamshedpur. The results also show that that past disaster conditions, response time and convenience for access are the most important factors for locating the temporary blood facilities during and post-disaster periods

    A Chance Constrained Programming Model for Reliable Emergency Vehicles Relocation Problem

    Get PDF
    AbstractEmergency vehicles relocation is one mechanism of increasing preparedness for potential emergencies. This paper addresses the problem of designing reliable emergency vehicles relocation system. Under this respect, we extend the DYNACO model with chance-constrained programming framework for the optimal redeployment of emergency vehicles. The model deals with the availability of emergency vehicles by approximate hypercube. In addition, other random elements including travel time and emergency demand are taken into account in the model. Solution procedure based on genetic algorithm and Monte-Carlo simulation is developed to solve the stochastic model. Computational experiences are reported to illustrate the performance and the effectiveness of the proposed solution

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    The SNS logistics network design : location and vehicle routing.

    Get PDF
    Large-scale emergencies caused by earthquake, tornado, pandemic flu, terrorism attacks and so on can wreak havoc to communities. In order to mitigate the impact of the events, emergency stockpiles of food, water, medicine and other materials have been set up around the US to be delivered to the affected areas during relief operations. One type of stockpile is called the Strategic National Stockpile (SNS). The SNS logistics network is designed to have multiple stages of facilities, each of which is managed by different levels of governmental authorities - federal, state and local authorities. The design of a logistics network for delivery of the SNS materials within a state are explored in this dissertation. There are three major areas of focus in this dissertation: (1) the SNS facility location model, which is used to determine sites for locating Receiving, Staging and Storage (RSS) and Regional Distribution Nodes (RDNs) to form a logistics network to deliver relief material to Points of Demand (PODs), where the materials are directly delivered to the affected population; (2) the SNS Vehicle Routing Problem (VRP), which is used to assist the SNS staff in determining the numbers of various types of trucks, and the routing schedules of each truck to develop an operational plan for delivering the required relief materials to the assigned PODs within the required duration; (3) the location-routing analysis of emergency scenarios, in which the facility location model and the VRP solution are integrated through the use of a computer program to run on several assumed emergency scenarios. Using real data from the department of public health in the Commonwealth of Kentucky, a transshipment and location model is formulated to determine the facility locations and the transshipment quantities of materials; a multiple-vehicle routing model allowing split deliveries and multiple routes per vehicle that must be completed within a required duration is formulated to determine the routing and scheduling of trucks. The facility location model is implemented using Microsoft Solver Foundation and C#. An algorithm combining the Clark and Wright saving algorithm and Simulated Annealing is designed and implemented in C# to solve the VRP. The algorithm can determine whether there is shortage of transportation capacity, and if so, how many of various types of trucks should be added for optimal performance. All the solution algorithms are integrated into a web-based SNS planning tool. In the location-routing analysis of emergency scenarios, a binary location model and an algorithm for solving VRP solution are integrated as a computer program to forecast the feasibility of distribution plans and the numbers of required trucks of various types. The model also compares the costs and benefits of direct and indirect shipment. A large-scale emergency scenario in which a specific type of vaccine is required to be delivered to the entire state of Kentucky is considered. The experiments are designed based on the real data provided by the Kentucky state government. Thus the experimental results provide valuable suggestions for future SNS preparedness planning

    Increasing Sustainability of Logistic Networks by Reducing Product Losses: A Network DEA Approach

    Get PDF
    This paper considers a multiproduct supply network, in which losses (e.g., spoilage of perishable products) can occur at either the nodes or the arcs. Using observed data, a Network Data Envelopment Analysis (NDEA) approach is proposed to assess the efficiency of the product flows in varying periods. Losses occur in each process as the observed output flows are lower than the observed input flows. The proposed NDEA model computes, within the NDEA technology, input and output targets for each process. The target operating points correspond to the minimum losses attainable using the best observed practice. The efficiency scores are computed comparing the observed losses with the minimum feasible losses. In addition to computing relative efficiency scores, an overall loss factor for each product and each node and link can be determined, both for the observed data and for the computed targets. A detailed illustration and an experimental design are used to study and validate the proposed approach. The results indicate that the proposed approach can identify and remove the inefficiencies in the observed data and that the potential spoilage reduction increases with the variability in the losses observed in the different periods.Ministerio de Ciencia DPI2017-85343-PFondo Europeo de Desarrollo Regional DPI2017-85343-
    corecore