259,386 research outputs found

    Multi-agent systems for power engineering applications - part 2 : Technologies, standards and tools for building multi-agent systems

    Get PDF
    This is the second part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. The paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled

    Measuring the BDARX architecture by agent oriented system a case study

    Get PDF
    Distributed systems are progressively designed as multi-agent systems that are helpful in designing high strength complex industrial software. Recently, distributed systems cooperative applications are openly access, dynamic and large scales. Nowadays, it hardly seems necessary to emphasis on the potential of decentralized software solutions. This is because the main benefit lies in the distributed nature of information, resources and action. On the other hand, the progression in multi agent systems creates new challenges to the traditional methodologies of fault-tolerance that typically relies on centralized and offline solution. Research on multi-agent systems had gained attention for designing software that operates in distributed and open environments, such as the Internet. DARX (Dynamic Agent Replication eXtension) is one of the architecture which aimed at building reliable software that would prove to be both flexible and scalable and also aimed to provide adaptive fault tolerance by using dynamic replication methodologies. Therefore, the enhancement of DARX known as BDARX can provide dynamic solution of byzantine faults for the agent based systems that embedded DARX. The BDARX architecture improves the fault tolerance ability of multi-agent systems in long run and strengthens the software to be more robust against such arbitrary faults. The BDARX provide the solution for the Byzantine fault tolerance in DARX by making replicas on the both sides of communication agents by using BFT protocol for agent systems instead of making replicas only on server end and assuming client as failure free. This paper shows that the dynamic behaviour of agents avoid us from making discrimination between server and client replicas
    • 

    corecore