845 research outputs found

    Mutual Information in Rank-One Matrix Estimation

    Full text link
    We consider the estimation of a n-dimensional vector x from the knowledge of noisy and possibility non-linear element-wise measurements of xxT , a very generic problem that contains, e.g. stochastic 2-block model, submatrix localization or the spike perturbation of random matrices. We use an interpolation method proposed by Guerra and later refined by Korada and Macris. We prove that the Bethe mutual information (related to the Bethe free energy and conjectured to be exact by Lesieur et al. on the basis of the non-rigorous cavity method) always yields an upper bound to the exact mutual information. We also provide a lower bound using a similar technique. For concreteness, we illustrate our findings on the sparse PCA problem, and observe that (a) our bounds match for a large region of parameters and (b) that it exists a phase transition in a region where the spectum remains uninformative. While we present only the case of rank-one symmetric matrix estimation, our proof technique is readily extendable to low-rank symmetric matrix or low-rank symmetric tensor estimationComment: 8 pages, 1 figure

    A Deterministic Equivalent for the Analysis of Non-Gaussian Correlated MIMO Multiple Access Channels

    Full text link
    Large dimensional random matrix theory (RMT) has provided an efficient analytical tool to understand multiple-input multiple-output (MIMO) channels and to aid the design of MIMO wireless communication systems. However, previous studies based on large dimensional RMT rely on the assumption that the transmit correlation matrix is diagonal or the propagation channel matrix is Gaussian. There is an increasing interest in the channels where the transmit correlation matrices are generally nonnegative definite and the channel entries are non-Gaussian. This class of channel models appears in several applications in MIMO multiple access systems, such as small cell networks (SCNs). To address these problems, we use the generalized Lindeberg principle to show that the Stieltjes transforms of this class of random matrices with Gaussian or non-Gaussian independent entries coincide in the large dimensional regime. This result permits to derive the deterministic equivalents (e.g., the Stieltjes transform and the ergodic mutual information) for non-Gaussian MIMO channels from the known results developed for Gaussian MIMO channels, and is of great importance in characterizing the spectral efficiency of SCNs.Comment: This paper is the revision of the original manuscript titled "A Deterministic Equivalent for the Analysis of Small Cell Networks". We have revised the original manuscript and reworked on the organization to improve the presentation as well as readabilit

    Invariance of visual operations at the level of receptive fields

    Get PDF
    Receptive field profiles registered by cell recordings have shown that mammalian vision has developed receptive fields tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time. This article presents a theoretical model by which families of idealized receptive field profiles can be derived mathematically from a small set of basic assumptions that correspond to structural properties of the environment. The article also presents a theory for how basic invariance properties to variations in scale, viewing direction and relative motion can be obtained from the output of such receptive fields, using complementary selection mechanisms that operate over the output of families of receptive fields tuned to different parameters. Thereby, the theory shows how basic invariance properties of a visual system can be obtained already at the level of receptive fields, and we can explain the different shapes of receptive field profiles found in biological vision from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment.Comment: 40 pages, 17 figure

    A Universal Analysis of Large-Scale Regularized Least Squares Solutions

    Get PDF
    A problem that has been of recent interest in statistical inference, machine learning and signal processing is that of understanding the asymptotic behavior of regularized least squares solutions under random measurement matrices (or dictionaries). The Least Absolute Shrinkage and Selection Operator (LASSO or least-squares with â„“_1 regularization) is perhaps one of the most interesting examples. Precise expressions for the asymptotic performance of LASSO have been obtained for a number of different cases, in particular when the elements of the dictionary matrix are sampled independently from a Gaussian distribution. It has also been empirically observed that the resulting expressions remain valid when the entries of the dictionary matrix are independently sampled from certain non-Gaussian distributions. In this paper, we confirm these observations theoretically when the distribution is sub-Gaussian. We further generalize the previous expressions for a broader family of regularization functions and under milder conditions on the underlying random, possibly non-Gaussian, dictionary matrix. In particular, we establish the universality of the asymptotic statistics (e.g., the average quadratic risk) of LASSO with non-Gaussian dictionaries

    Asymptotic Mutual Information for the Two-Groups Stochastic Block Model

    Full text link
    We develop an information-theoretic view of the stochastic block model, a popular statistical model for the large-scale structure of complex networks. A graph GG from such a model is generated by first assigning vertex labels at random from a finite alphabet, and then connecting vertices with edge probabilities depending on the labels of the endpoints. In the case of the symmetric two-group model, we establish an explicit `single-letter' characterization of the per-vertex mutual information between the vertex labels and the graph. The explicit expression of the mutual information is intimately related to estimation-theoretic quantities, and --in particular-- reveals a phase transition at the critical point for community detection. Below the critical point the per-vertex mutual information is asymptotically the same as if edges were independent. Correspondingly, no algorithm can estimate the partition better than random guessing. Conversely, above the threshold, the per-vertex mutual information is strictly smaller than the independent-edges upper bound. In this regime there exists a procedure that estimates the vertex labels better than random guessing.Comment: 41 pages, 3 pdf figure
    • …
    corecore