53 research outputs found

    Minkowski Actions of Quaternion Sets and their Applications

    Get PDF
    Applications of Laguerre geometry to computer aided geometric design are presented, realized through Minkowski actions. Basic Laguerre geometry is first discussed. Then quaternions, set multiplication, and the use of quaternion sets to define Minkowski actions are described and used to achieve results used in geometric design

    Anisotropic Wavefronts and Laguerre Geometry

    Full text link
    Motivated by the study of wave fronts in anisotropic media, we propose an incidence geometry of anisotropic spheres in a Finsler-Minkowski space. An anisotropic version of the Laguerre functional is considered. In some circumstances, this functional can be used to determine that two wavefronts observed at distinct times in a homogeneous, anisotropic medium, do not originate from the same source

    Algorithms for curve design and accurate computations with totally positive matrices

    Get PDF
    Esta tesis doctoral se enmarca dentro de la teoría de la Positividad Total. Las matrices totalmente positivas han aparecido en aplicaciones de campos tan diversos como la Teoría de la Aproximación, la Biología, la Economía, la Combinatoria, la Estadística, las Ecuaciones Diferenciales, la Mecánica, el Diseño Geométrico Asistido por Ordenador o el Álgebra Numérica Lineal. En esta tesis nos centraremos en dos de los campos que están relacionados con matrices totalmente positivas.This doctoral thesis is framed within the theory of Total Positivity. Totally positive matrices have appeared in applications from fields as diverse as Approximation Theory, Biology, Economics, Combinatorics, Statistics, Differential Equations, Mechanics, Computer Aided Geometric Design or Linear Numerical Algebra. In this thesis, we will focus on two of the fields that are related to totally positive matrices.<br /

    Ruled Laguerre minimal surfaces

    Full text link
    A Laguerre minimal surface is an immersed surface in the Euclidean space being an extremal of the functional \int (H^2/K - 1) dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces R(u,v) = (Au, Bu, Cu + D cos 2u) + v (sin u, cos u, 0), where A, B, C, D are fixed real numbers. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil.Comment: 28 pages, 9 figures. Minor correction: missed assumption (*) added to Propositions 1-2 and Theorem 2, missed case (nested circles having nonempty envelope) added in the proof of Pencil Theorem 4, missed proof that the arcs cut off by the envelope are disjoint added in the proof of Lemma

    On organizing principles of Discrete Differential Geometry. Geometry of spheres

    Full text link
    Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. In this survey we discuss the following two fundamental Discretization Principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem discussed in this survey is a discretization of curvature line parametrized surfaces in Lie geometry. We find a discretization of curvature line parametrization which unifies the circular and conical nets by systematically applying the Discretization Principles.Comment: 57 pages, 18 figures; In the second version the terminology is slightly changed and umbilic points are discusse

    Characterizing envelopes of moving rotational cones and applications in CNC machining

    Get PDF
    Motivated by applications in CNC machining, we provide a characterization of surfaces which are enveloped by a one-parametric family of congruent rotational cones. As limit cases, we also address ruled surfaces and their offsets. The characterizations are higher order nonlinear PDEs generalizing the ones by Gauss and Monge for developable surfaces and ruled surfaces, respectively. The derivation includes results on local approximations of a surface by cones of revolution, which are expressed by contact order in the space of planes. To this purpose, the isotropic model of Laguerre geometry is used as there rotational cones correspond to curves (isotropic circles) and higher order contact is computed with respect to the image of the input surface in the isotropic model. Therefore, one studies curve-surface contact that is conceptually simpler than the surface-surface case. We show that, in a generic case, there exist at most six positions of a fixed rotational cone that have third order contact with the input surface. These results are themselves of interest in geometric computing, for example in cutter selection and positioning for flank CNC machining.RYC-2017-2264

    Implicitization of curves and (hyper)surfaces using predicted support

    Get PDF
    We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm works even in the presence of base points but, in this case, the implicit equation shall be obtained as a factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well, and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We compare our prototype to existing software and find that it is rather competitive

    Rational rolling ball blending of natural quadrics

    Get PDF
    We construct a blending surface of two natural quadrics using rational variable rolling ball approach, i.e. as a canal surface with a rational spine curve and a rational radius. All general positions of the given quadric surfaces are considered. The proposed construction is Laguerre invariant. In particular, the blending surface has rational offset of the same degree. Natūralių kvadrikių jungimas racionalaus apriedančio rutuliuko metodu Santrauka Natūralios kvadrikos (sferos, apskritiminiai cilindrai ir kūgiai) dažnai naudojamos geometriniame modeliavime. Šiame darbe siūlomas naujas dvieju natūraliu kvadrikiu glodaus jungimo metodas, naudojant kintamo racionalaus spindulio apriedančio rutuliuko metoda, t.y. jungiamasis paviršius ‐ tai kanalinis paviršius, kuris turi racionalia ašine kreive ir racionalu spinduli. Metodas tinka visiems dvieju kvadrikiu bendru poziciju atvejams. Konstrukcija yra invariantiška Laguerre geometrijos atžvilgiu: pavyzdžiui, jungiamasis paviršius turi to paties laipsnio racionalu ofseta. First Published Online: 14 Oct 201

    Spinor representation in isotropic 3-space via Laguerre geometry

    Full text link
    We give a detailed description of the geometry of isotropic space, in parallel to those of Euclidean space within the realm of Laguerre geometry. After developing basic surface theory in isotropic space, we define spin transformations, directly leading to the spinor representation of conformal surfaces in isotropic space. As an application, we obtain the Weierstrass-type representation for zero mean curvature surfaces, and the Kenmotsu-type representation for constant mean curvature surfaces, allowing us to construct many explicit examples.Comment: 30 pages, 9 figure
    corecore