78 research outputs found

    A Geometrical Derivation of a Family of Quantum Speed Limit Results

    Full text link
    We derive a family of quantum speed limit results in time independent systems with pure states and a finite dimensional state space, by using a geometric method based on right invariant action functionals on SU(N). The method relates speed limits for implementing quantum gates to bounds on orthogonality times. We reproduce the known result of the Margolus-Levitin theorem, and a known generalisation of the Margolis-Levitin theorem, as special cases of our method, which produces a rich family of other similar speed limit formulas corresponding to positive homogeneous functions on su(n). We discuss the general relationship between speed limits for controlling a quantum state and a system's time evolution operator.Comment: 12 page

    Classical kinematics and Finsler structures for nonminimal Lorentz-violating fermions

    Get PDF
    In the current paper the Lagrangian of a classical, relativistic point particle is obtained whose conjugate momentum satisfies the dispersion relation of a quantum wave packet that is subject to Lorentz violation based on a particular coefficient of the nonminimal Standard-Model Extension (SME). The properties of this Lagrangian are analyzed and two corresponding Finsler structures are obtained. One structure describes a scaled Euclidean geometry, whereas the other is neither a Riemann nor a Randers or Kropina structure. The results of the article provide some initial understanding of classical Lagrangians of the nonminimal SME fermion sector.Comment: 26 pages, 5 figure

    Time-optimal navigation through quantum wind

    Get PDF
    The quantum navigation problem of finding the time-optimal control Hamiltonian that transports a given initial state to a target state through quantum wind, that is, under the influence of external fields or potentials, is analysed. By lifting the problem from the state space to the space of unitary gates realising the required task, we are able to deduce the form of the solution to the problem by deriving a universal quantum speed limit. The expression thus obtained indicates that further simplifications of this apparently difficult problem are possible if we switch to the interaction picture of quantum mechanics. A complete solution to the navigation problem for an arbitrary quantum system is then obtained, and the behaviour of the solution is illustrated in the case of a two-level system

    Zermelo Navigation in the Quantum Brachistochrone

    Get PDF
    We analyse the optimal times for implementing unitary quantum gates in a constrained finite dimensional controlled quantum system. The family of constraints studied is that the permitted set of (time dependent) Hamiltonians is the unit ball of a norm induced by an inner product on su(n). We also consider a generalisation of this to arbitrary norms. We construct a Randers metric, by applying a theorem of Shen on Zermelo navigation, the geodesics of which are the time optimal trajectories compatible with the prescribed constraint. We determine all geodesics and the corresponding time optimal Hamiltonian for a specific constraint on the control i.e. k (Tr(Hc(t)^2) = 1 for any given value of k > 0. Some of the results of Carlini et. al. are re-derived using alternative methods. A first order system of differential equations for the optimal Hamiltonian is obtained and shown to be of the form of the Euler Poincare equations. We illustrate that this method can form a methodology for determining which physical substrates are effective at supporting the implementation of fast quantum computation

    Elementary solution to the time-independent quantum navigation problem

    Get PDF
    A quantum navigation problem concerns the identification of a time-optimal Hamiltonian that realizes a required quantum process or task, under the influence of a prevailing ‘background’ Hamiltonian that cannot be manipulated. When the task is to transform one quantum state into another, finding the solution in closed form to the problem is nontrivial even in the case of timeindependent Hamiltonians. An elementary solution, based on trigonometric analysis, is found here when the Hilbert space dimension is two. Difficulties arising from generalizations to higher-dimensional systems are discussed

    The Geometry of Speed Limiting Resources in Physical Models of Computation

    Get PDF
    We study the maximum speed of quantum computation and how it is affected by limitations on physical resources. We show how the resulting concepts generalize to a broader class of physical models of computation within dynamical systems and introduce a specific algebraic structure representing these speed limits. We derive a family of quantum speed limit results in resource-constrained quantum systems with pure states and a finite dimensional state space, by using a geometric method based on right invariant action functionals on SU(N). We show that when the action functional is bi-invariant, the minimum time for implementing any quantum gate using a potentially time-dependent Hamiltonian is equal to the minimum time when using a constant Hamiltonian, thus constant Hamiltonians are time optimal for these constraints. We give an explicit formula for the time in these cases, in terms of the resource constraint. We show how our method produces a rich family of speed limit results, of which the generalized Margolus–Levitin theorem and the Mandelstam–Tamm inequality are special cases. We discuss the broader context of geometric approaches to speed limits in physical computation, including the way geometric approaches to quantum speed limits are a model for physical speed limits to computation arising from a limited resource
    • …
    corecore