612 research outputs found

    Applications of Derandomization Theory in Coding

    Get PDF
    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.]Comment: EPFL Phd Thesi

    Improved Pseudorandom Generators from Pseudorandom Multi-Switching Lemmas

    Get PDF
    We give the best known pseudorandom generators for two touchstone classes in unconditional derandomization: an Δ\varepsilon-PRG for the class of size-MM depth-dd AC0\mathsf{AC}^0 circuits with seed length log⁥(M)d+O(1)⋅log⁥(1/Δ)\log(M)^{d+O(1)}\cdot \log(1/\varepsilon), and an Δ\varepsilon-PRG for the class of SS-sparse F2\mathbb{F}_2 polynomials with seed length 2O(log⁥S)⋅log⁥(1/Δ)2^{O(\sqrt{\log S})}\cdot \log(1/\varepsilon). These results bring the state of the art for unconditional derandomization of these classes into sharp alignment with the state of the art for computational hardness for all parameter settings: improving on the seed lengths of either PRG would require breakthrough progress on longstanding and notorious circuit lower bounds. The key enabling ingredient in our approach is a new \emph{pseudorandom multi-switching lemma}. We derandomize recently-developed \emph{multi}-switching lemmas, which are powerful generalizations of H{\aa}stad's switching lemma that deal with \emph{families} of depth-two circuits. Our pseudorandom multi-switching lemma---a randomness-efficient algorithm for sampling restrictions that simultaneously simplify all circuits in a family---achieves the parameters obtained by the (full randomness) multi-switching lemmas of Impagliazzo, Matthews, and Paturi [IMP12] and H{\aa}stad [H{\aa}s14]. This optimality of our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs for AC0\mathsf{AC}^0 and sparse F2\mathbb{F}_2 polynomials

    The Minrank of Random Graphs

    Get PDF
    The minrank of a graph GG is the minimum rank of a matrix MM that can be obtained from the adjacency matrix of GG by switching some ones to zeros (i.e., deleting edges) and then setting all diagonal entries to one. This quantity is closely related to the fundamental information-theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS'06), network coding and distributed storage, and to Valiant's approach for proving superlinear circuit lower bounds (Valiant, Boolean Function Complexity '92). We prove tight bounds on the minrank of random Erd\H{o}s-R\'enyi graphs G(n,p)G(n,p) for all regimes of p∈[0,1]p\in[0,1]. In particular, for any constant pp, we show that minrk(G)=Θ(n/log⁥n)\mathsf{minrk}(G) = \Theta(n/\log n) with high probability, where GG is chosen from G(n,p)G(n,p). This bound gives a near quadratic improvement over the previous best lower bound of Ω(n)\Omega(\sqrt{n}) (Haviv and Langberg, ISIT'12), and partially settles an open problem raised by Lubetzky and Stav (FOCS '07). Our lower bound matches the well-known upper bound obtained by the "clique covering" solution, and settles the linear index coding problem for random graphs. Finally, our result suggests a new avenue of attack, via derandomization, on Valiant's approach for proving superlinear lower bounds for logarithmic-depth semilinear circuits

    Existence of codes with constant PMEPR and related design

    Get PDF
    Recently, several coding methods have been proposed to reduce the high peak-to-mean envelope ratio (PMEPR) of multicarrier signals. It has also been shown that with probability one, the PMEPR of any random codeword chosen from a symmetric quadrature amplitude modulation/phase shift keying (QAM/PSK) constellation is logn for large n, where n is the number of subcarriers. Therefore, the question is how much reduction beyond logn can one asymptotically achieve with coding, and what is the price in terms of the rate loss? In this paper, by optimally choosing the sign of each subcarrier, we prove the existence of q-ary codes of constant PMEPR for sufficiently large n and with a rate loss of at most log/sub q/2. We also obtain a Varsharmov-Gilbert-type upper bound on the rate of a code, given its minimum Hamming distance with constant PMEPR, for large n. Since ours is an existence result, we also study the problem of designing signs for PMEPR reduction. Motivated by a derandomization algorithm suggested by Spencer, we propose a deterministic and efficient algorithm to design signs such that the PMEPR of the resulting codeword is less than clogn for any n, where c is a constant independent of n. For symmetric q-ary constellations, this algorithm constructs a code with rate 1-log/sub q/2 and with PMEPR of clogn with simple encoding and decoding. Simulation results for our algorithm are presented

    Derandomization and Group Testing

    Full text link
    The rapid development of derandomization theory, which is a fundamental area in theoretical computer science, has recently led to many surprising applications outside its initial intention. We will review some recent such developments related to combinatorial group testing. In its most basic setting, the aim of group testing is to identify a set of "positive" individuals in a population of items by taking groups of items and asking whether there is a positive in each group. In particular, we will discuss explicit constructions of optimal or nearly-optimal group testing schemes using "randomness-conducting" functions. Among such developments are constructions of error-correcting group testing schemes using randomness extractors and condensers, as well as threshold group testing schemes from lossless condensers.Comment: Invited Paper in Proceedings of 48th Annual Allerton Conference on Communication, Control, and Computing, 201
    • 

    corecore