5,344 research outputs found

    Updates in a Rule based Language for Objects

    Full text link
    The integration of object-oriented concepts into deductive databases has been investigated for a certain time now. Various approaches to incorporate updates into deduction have been proposed. The current paper presents an approach which is based on object versioning; different versions of one object may be created and referenced during an update-process. By means of such versions it becomes possible to exert explicit control on the update process during bottom-up evaluation in a rather intuitive way. The units for updates are the result sets of base methods, i.e. methods, whose results are stored in the object-base and are not defined by rules. However, the update itself may be defined by rules. Update-programs have fixpoint semantics; the fixpoint can be computed by a bottom-up evaluation according to a certain stratification

    Introducing Dynamic Behavior in Amalgamated Knowledge Bases

    Full text link
    The problem of integrating knowledge from multiple and heterogeneous sources is a fundamental issue in current information systems. In order to cope with this problem, the concept of mediator has been introduced as a software component providing intermediate services, linking data resources and application programs, and making transparent the heterogeneity of the underlying systems. In designing a mediator architecture, we believe that an important aspect is the definition of a formal framework by which one is able to model integration according to a declarative style. To this purpose, the use of a logical approach seems very promising. Another important aspect is the ability to model both static integration aspects, concerning query execution, and dynamic ones, concerning data updates and their propagation among the various data sources. Unfortunately, as far as we know, no formal proposals for logically modeling mediator architectures both from a static and dynamic point of view have already been developed. In this paper, we extend the framework for amalgamated knowledge bases, presented by Subrahmanian, to deal with dynamic aspects. The language we propose is based on the Active U-Datalog language, and extends it with annotated logic and amalgamation concepts. We model the sources of information and the mediator (also called supervisor) as Active U-Datalog deductive databases, thus modeling queries, transactions, and active rules, interpreted according to the PARK semantics. By using active rules, the system can efficiently perform update propagation among different databases. The result is a logical environment, integrating active and deductive rules, to perform queries and update propagation in an heterogeneous mediated framework.Comment: Other Keywords: Deductive databases; Heterogeneous databases; Active rules; Update

    BIM semantic-enrichment for built heritage representation

    Get PDF
    In the built heritage context, BIM has shown difficulties in representing and managing the large and complex knowledge related to non-geometrical aspects of the heritage. Within this scope, this paper focuses on a domain-specific semantic-enrichment of BIM methodology, aimed at fulfilling semantic representation requirements of built heritage through Semantic Web technologies. To develop this semantic-enriched BIM approach, this research relies on the integration of a BIM environment with a knowledge base created through information ontologies. The result is knowledge base system - and a prototypal platform - that enhances semantic representation capabilities of BIM application to architectural heritage processes. It solves the issue of knowledge formalization in cultural heritage informative models, favouring a deeper comprehension and interpretation of all the building aspects. Its open structure allows future research to customize, scale and adapt the knowledge base different typologies of artefacts and heritage activities

    View maintenance and change notification for application program views

    Full text link

    A Logical Approach to Cooperative Information Systems

    Get PDF
    ``Cooperative information system management'' refers to the capacity of several computing systems to communicate and cooperate in order to acquire, store, manage, query data and knowledge. Current solutions to the problem of cooperative information management are still far from being satisfactory. In particular, they lack the ability to fully model cooperation among heterogeneous systems according to a declarative style. The use of a logical approach to model all aspects of cooperation seems very promising. In this paper, we de®ne a logical language able to support cooperative queries, updates and update propagation. We model the sources of information as deductive databases, sharing the same logical language to ex- press queries and updates, but containing independent, even if possibly related, data. We use the Obj-U-Datalog (E. Bertino, G. Guerrini, D. Montesi, Toward deductive object data- bases, Theory and Practice of Object Systems 1 (1) (1995) 19±39) language to model queries and transactions in each source of data. Such language is then extended to deal with active rules in the style of Active-U-Datalog (E. Bertino, B. Catania, V. Gervasi, A. Ra aet a, Ac- tive-U-Datalog: Integrating active rules in a logical update language, in: B. Freitag, H. Decker, M. Kifer, A. Voronkov (Eds.), LBCS 1472: Transactions and Change in Login Databases, 1998, pp. 106±132), interpreted according to the PARK semantics proposed in G. Gottlob, G. Moerkotte, V.S. Subrahmanian (The PARK semantics for active rules, in: P.M.G. Apers, M. Bouzeghoub, G. Gardarin (Eds.), LNCS 1057: Proceedings of the Fifth International Con- ference on Extending Database Technology, 1996, pp. 35±55). By using active rules, a system can e ciently perform update propagation among di erent databases. The result is a logical environment, integrating active and deductive rules, to perform update propagation in a cooperative framework

    Developing a labelled object-relational constraint database architecture for the projection operator

    Get PDF
    Current relational databases have been developed in order to improve the handling of stored data, however, there are some types of information that have to be analysed for which no suitable tools are available. These new types of data can be represented and treated as constraints, allowing a set of data to be represented through equations, inequations and Boolean combinations of both. To this end, constraint databases were defined and some prototypes were developed. Since there are aspects that can be improved, we propose a new architecture called labelled object-relational constraint database (LORCDB). This provides more expressiveness, since the database is adapted in order to support more types of data, instead of the data having to be adapted to the database. In this paper, the projection operator of SQL is extended so that it works with linear and polynomial constraints and variables of constraints. In order to optimize query evaluation efficiency, some strategies and algorithms have been used to obtain an efficient query plan. Most work on constraint databases uses spatiotemporal data as case studies. However, this paper proposes model-based diagnosis since it is a highly potential research area, and model-based diagnosis permits more complicated queries than spatiotemporal examples. Our architecture permits the queries over constraints to be defined over different sets of variables by using symbolic substitution and elimination of variables.Ministerio de Ciencia y Tecnología DPI2006-15476-C02-0

    Kolmogorov Complexity in perspective. Part II: Classification, Information Processing and Duality

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts published in a same volume. Part II is dedicated to the relation between logic and information system, within the scope of Kolmogorov algorithmic information theory. We present a recent application of Kolmogorov complexity: classification using compression, an idea with provocative implementation by authors such as Bennett, Vitanyi and Cilibrasi. This stresses how Kolmogorov complexity, besides being a foundation to randomness, is also related to classification. Another approach to classification is also considered: the so-called "Google classification". It uses another original and attractive idea which is connected to the classification using compression and to Kolmogorov complexity from a conceptual point of view. We present and unify these different approaches to classification in terms of Bottom-Up versus Top-Down operational modes, of which we point the fundamental principles and the underlying duality. We look at the way these two dual modes are used in different approaches to information system, particularly the relational model for database introduced by Codd in the 70's. This allows to point out diverse forms of a fundamental duality. These operational modes are also reinterpreted in the context of the comprehension schema of axiomatic set theory ZF. This leads us to develop how Kolmogorov's complexity is linked to intensionality, abstraction, classification and information system.Comment: 43 page

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515
    corecore