27 research outputs found

    On MDS Codes With Galois Hulls of Arbitrary Dimensions

    Full text link
    The Galois hulls of linear codes are a generalization of the Euclidean and Hermitian hulls of linear codes. In this paper, we study the Galois hulls of (extended) GRS codes and present several new constructions of MDS codes with Galois hulls of arbitrary dimensions via (extended) GRS codes. Two general methods of constructing MDS codes with Galois hulls of arbitrary dimensions by Hermitian or general Galois self-orthogonal (extended) GRS codes are given. Using these methods, some MDS codes with larger dimensions and Galois hulls of arbitrary dimensions can be obtained and relatively strict conditions can also lead to many new classes of MDS codes with Galois hulls of arbitrary dimensions.Comment: 21 pages,5 table

    On Hull-Variation Problem of Equivalent Linear Codes

    Full text link
    The intersection Cβ‹‚CβŠ₯{\bf C}\bigcap {\bf C}^{\perp} (Cβ‹‚CβŠ₯h{\bf C}\bigcap {\bf C}^{\perp_h}) of a linear code C{\bf C} and its Euclidean dual CβŠ₯{\bf C}^{\perp} (Hermitian dual CβŠ₯h{\bf C}^{\perp_h}) is called the Euclidean (Hermitian) hull of this code. The construction of an entanglement-assisted quantum code from a linear code over Fq{\bf F}_q or Fq2{\bf F}_{q^2} depends essentially on the Euclidean hull or the Hermitian hull of this code. Therefore it is natural to consider the hull-variation problem when a linear code C{\bf C} is transformed to an equivalent code vβ‹…C{\bf v} \cdot {\bf C}. In this paper we introduce the maximal hull dimension as an invariant of a linear code with respect to the equivalent transformations. Then some basic properties of the maximal hull dimension are studied. A general method to construct hull-decreasing or hull-increasing equivalent linear codes is proposed. We prove that for a nonnegative integer hh satisfying 0≀h≀nβˆ’10 \leq h \leq n-1, a linear [2n,n]q[2n, n]_q self-dual code is equivalent to a linear hh-dimension hull code. On the opposite direction we prove that a linear LCD code over F2s{\bf F}_{2^s} satisfying dβ‰₯2d\geq 2 and dβŠ₯β‰₯2d^{\perp} \geq 2 is equivalent to a linear one-dimension hull code under a weak condition. Several new families of negacyclic LCD codes and BCH LCD codes over F3{\bf F}_3 are also constructed. Our method can be applied to the generalized Reed-Solomon codes and the generalized twisted Reed-Solomon codes to construct arbitrary dimension hull MDS codes. Some new EAQEC codes including MDS and almost MDS entanglement-assisted quantum codes are constructed. Many EAQEC codes over small fields are constructed from optimal Hermitian self-dual codes.Comment: 33 pages, minor error correcte

    Entanglement-assisted Quantum Codes from Algebraic Geometry Codes

    Full text link
    Quantum error correcting codes play the role of suppressing noise and decoherence in quantum systems by introducing redundancy. Some strategies can be used to improve the parameters of these codes. For example, entanglement can provide a way for quantum error correcting codes to achieve higher rates than the one obtained via the traditional stabilizer formalism. Such codes are called entanglement-assisted quantum (QUENTA) codes. In this paper, we use algebraic geometry codes to construct several families of QUENTA codes via the Euclidean and the Hermitian construction. Two of the families created have maximal entanglement and have quantum Singleton defect equal to zero or one. Comparing the other families with the codes with the respective quantum Gilbert-Varshamov bound, we show that our codes have a rate that surpasses that bound. At the end, asymptotically good towers of linear complementary dual codes are used to obtain asymptotically good families of maximal entanglement QUENTA codes. Furthermore, a simple comparison with the quantum Gilbert-Varshamov bound demonstrates that using our construction it is possible to create an asymptotically family of QUENTA codes that exceeds this bound.Comment: Some results in this paper were presented at the 2019 IEEE International Symposium on Information Theor

    On Galois self-orthogonal algebraic geometry codes

    Full text link
    Galois self-orthogonal (SO) codes are generalizations of Euclidean and Hermitian SO codes. Algebraic geometry (AG) codes are the first known class of linear codes exceeding the Gilbert-Varshamov bound. Both of them have attracted much attention for their rich algebraic structures and wide applications in these years. In this paper, we consider them together and study Galois SO AG codes. A criterion for an AG code being Galois SO is presented. Based on this criterion, we construct several new classes of maximum distance separable (MDS) Galois SO AG codes from projective lines and several new classes of Galois SO AG codes from projective elliptic curves, hyper-elliptic curves and hermitian curves. In addition, we give an embedding method that allows us to obtain more MDS Galois SO codes from known MDS Galois SO AG codes.Comment: 18paper

    Quantum Error-Control Codes

    Full text link
    The article surveys quantum error control, focusing on quantum stabilizer codes, stressing on the how to use classical codes to design good quantum codes. It is to appear as a book chapter in "A Concise Encyclopedia of Coding Theory," edited by C. Huffman, P. Sole and J-L Kim, to be published by CRC Press
    corecore