4,563 research outputs found

    Orthogonal Wavelets via Filter Banks: Theory and Applications

    Get PDF
    Wavelets are used in many applications, including image processing, signal analysis and seismology. The critical problem is the representation of a signal using a small number of computable functions, such that it is represented in a concise and computationally efficient form. It is shown that wavelets are closely related to filter banks (sub band filtering) and that there is a direct analogy between multiresolution analysis in continuous time and a filter bank in discrete time. This provides a clear physical interpretation of the approximation and detail spaces of multiresolution analysis in terms of the frequency bands of a signal. Only orthogonal wavelets, which are derived from orthogonal filter banks, are discussed. Several examples and applications are considered

    Biorthogonal partners and applications

    Get PDF
    Two digital filters H(z) and F(z) are said to be biorthogonal partners of each other if their cascade H(z)F(z) satisfies the Nyquist or zero-crossing property. Biorthogonal partners arise in many different contexts such as filterbank theory, exact and least squares digital interpolation, and multiresolution theory. They also play a central role in the theory of equalization, especially, fractionally spaced equalizers in digital communications. We first develop several theoretical properties of biorthogonal partners. We also develop conditions for the existence of biorthogonal partners and FIR biorthogonal pairs and establish the connections to the Riesz basis property. We then explain how these results play a role in many of the above-mentioned applications

    Multiresolution approximation of the vector fields on T^3

    Full text link
    Multiresolution approximation (MRA) of the vector fields on T^3 is studied. We introduced in the Fourier space a triad of vector fields called helical vectors which derived from the spherical coordinate system basis. Utilizing the helical vectors, we proved the orthogonal decomposition of L^2(T^3) which is a synthesis of the Hodge decomposition of the differential 1- or 2-form on T^3 and the Beltrami decomposition that decompose the space of solenoidal vector fields into the eigenspaces of curl operator. In the course of proof, a general construction procedure of the divergence-free orthonormal complete basis from the basis of scalar function space is presented. Applying this procedure to MRA of L^2(T^3), we discussed the MRA of vector fields on T^3 and the analyticity and regularity of vector wavelets. It is conjectured that the solenoidal wavelet basis must break r-regular condition, i.e. some wavelet functions cannot be rapidly decreasing function because of the inevitable singularities of helical vectors. The localization property and spatial structure of solenoidal wavelets derived from the Littlewood-Paley type MRA (Meyer's wavelet) are also investigated numerically.Comment: LaTeX, 33 Pages, 3 figures. submitted to J. Math. Phy

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh
    corecore