489,594 research outputs found

    National Program for Artificial Intelligence (2018)

    Get PDF

    Towards an Intelligent Database System Founded on the SP Theory of Computing and Cognition

    Full text link
    The SP theory of computing and cognition, described in previous publications, is an attractive model for intelligent databases because it provides a simple but versatile format for different kinds of knowledge, it has capabilities in artificial intelligence, and it can also function like established database models when that is required. This paper describes how the SP model can emulate other models used in database applications and compares the SP model with those other models. The artificial intelligence capabilities of the SP model are reviewed and its relationship with other artificial intelligence systems is described. Also considered are ways in which current prototypes may be translated into an 'industrial strength' working system

    Applications of artificial intelligence to mission planning

    Get PDF
    The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques

    Knowledge representation by connection matrices: A method for the on-board implementation of large expert systems

    Get PDF
    Extremely large knowledge sources and efficient knowledge access characterizing future real-life artificial intelligence applications represent crucial requirements for on-board artificial intelligence systems due to obvious computer time and storage constraints on spacecraft. A type of knowledge representation and corresponding reasoning mechanism is proposed which is particularly suited for the efficient processing of such large knowledge bases in expert systems

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Artificial intelligence and medical education: a global mixed-methods study of medical students’ perspectives

    Get PDF
    Objective: Medical students, as clinicians and healthcare leaders of the future, are key stakeholders in the clinical roll-out of artificial intelligence-driven technologies. The authors aim to provide the first report on the state of artificial intelligence in medical education globally by exploring the perspectives of medical students. Methods: The authors carried out a mixed-methods study of focus groups and surveys with 128 medical students from 48 countries. The study explored knowledge around artificial intelligence as well as what students wished to learn about artificial intelligence and how they wished to learn this. A combined qualitative and quantitative analysis was used. Results: Support for incorporating teaching on artificial intelligence into core curricula was ubiquitous across the globe, but few students had received teaching on artificial intelligence. Students showed knowledge on the applications of artificial intelligence in clinical medicine as well as on artificial intelligence ethics. They were interested in learning about clinical applications, algorithm development, coding and algorithm appraisal. Hackathon-style projects and multidisciplinary education involving computer science students were suggested for incorporation into the curriculum. Conclusions: Medical students from all countries should be provided teaching on artificial intelligence as part of their curriculum to develop skills and knowledge around artificial intelligence to ensure a patient-centred digital future in medicine. This teaching should focus on the applications of artificial intelligence in clinical medicine. Students should also be given the opportunity to be involved in algorithm development. Students in low- and middle-income countries require the foundational technology as well as robust teaching on artificial intelligence to ensure that they can drive innovation in their healthcare settings
    • …
    corecore