6,755 research outputs found

    Bringing Business Intelligence to Health Information Technology Curriculum

    Get PDF
    Business intelligence (BI) and healthcare analytics are the emerging technologies that provide analytical capability to help healthcare industry improve service quality, reduce cost, and manage risks. However, such component on analytical healthcare data processing is largely missed from current healthcare information technology (HIT) or health informatics (HI) curricula. In this paper, we took an initial step to fill this gap. We investigated the current HIT educational programs, BI industry, and healthcare BI job listings, and students’ perceptions of BI and how BI could be incorporated into HIT programs. The student survey results showed strong interests from students in a HIT course containing BI components or a BI course specialized in the healthcare context. Based on the student survey and investigation of BI industry and job market, as well as HIT educational programs, we developed a general curriculum framework and exemplar implementation strategies to demonstrate how BI can be incorporated into an HI or HIT program. To the best of our knowledge, this research is the first of its kind. Our approach of integrating information from students, the HIT industry and other HIT programs can also be used as a model for general HIT curriculum development and improvement

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Flow Dynamics in Cardiovascular Devices: A Comprehensive Review

    Get PDF
    This review explores flow dynamics in cardiovascular devices, focusing on fundamental fluid mechanics principles and normal blood flow patterns. It discusses the role of different structures in maintaining flow dynamics and the importance of stents, heart valves, artificial hearts, and ventricular assist devices in cardiovascular interventions. The review emphasizes the need for optimized designs and further research to enhance knowledge of flow dynamics in cardiovascular devices, advancing the field and improving patient care in cardiovascular interventions

    SenseCare: A Research Platform for Medical Image Informatics and Interactive 3D Visualization

    Full text link
    Clinical research on smart healthcare has an increasing demand for intelligent and clinic-oriented medical image computing algorithms and platforms that support various applications. To this end, we have developed SenseCare research platform for smart healthcare, which is designed to boost translational research on intelligent diagnosis and treatment planning in various clinical scenarios. To facilitate clinical research with Artificial Intelligence (AI), SenseCare provides a range of AI toolkits for different tasks, including image segmentation, registration, lesion and landmark detection from various image modalities ranging from radiology to pathology. In addition, SenseCare is clinic-oriented and supports a wide range of clinical applications such as diagnosis and surgical planning for lung cancer, pelvic tumor, coronary artery disease, etc. SenseCare provides several appealing functions and features such as advanced 3D visualization, concurrent and efficient web-based access, fast data synchronization and high data security, multi-center deployment, support for collaborative research, etc. In this paper, we will present an overview of SenseCare as an efficient platform providing comprehensive toolkits and high extensibility for intelligent image analysis and clinical research in different application scenarios.Comment: 11 pages, 10 figure

    Transfer Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection using Chest X-ray

    Get PDF
    Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper is to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances made in making accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN)- AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. 5247 Bacterial, viral and normal chest x-rays images underwent preprocessing techniques and the modified images were trained for the transfer learning based classification task. In this work, the authors have reported three schemes of classifications: normal vs pneumonia, bacterial vs viral pneumonia and normal, bacterial and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial and viral pneumonia were 98%, 95%, and 93.3% respectively. This is the highest accuracy in any scheme than the accuracies reported in the literature. Therefore, the proposed study can be useful in faster-diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.Comment: 13 Figures, 5 tables. arXiv admin note: text overlap with arXiv:2003.1314

    Utilizing artificial intelligence in perioperative patient flow:systematic literature review

    Get PDF
    Abstract. The purpose of this thesis was to map the existing landscape of artificial intelligence (AI) applications used in secondary healthcare, with a focus on perioperative care. The goal was to find out what systems have been developed, and how capable they are at controlling perioperative patient flow. The review was guided by the following research question: How is AI currently utilized in patient flow management in the context of perioperative care? This systematic literature review examined the current evidence regarding the use of AI in perioperative patient flow. A comprehensive search was conducted in four databases, resulting in 33 articles meeting the inclusion criteria. Findings demonstrated that AI technologies, such as machine learning (ML) algorithms and predictive analytics tools, have shown somewhat promising outcomes in optimizing perioperative patient flow. Specifically, AI systems have proven effective in predicting surgical case durations, assessing risks, planning treatments, supporting diagnosis, improving bed utilization, reducing cancellations and delays, and enhancing communication and collaboration among healthcare providers. However, several challenges were identified, including the need for accurate and reliable data sources, ethical considerations, and the potential for biased algorithms. Further research is needed to validate and optimize the application of AI in perioperative patient flow. The contribution of this thesis is summarizing the current state of the characteristics of AI application in perioperative patient flow. This systematic literature review provides information about the features of perioperative patient flow and the clinical tasks of AI applications previously identified

    Primer for Image Informatics in Personalized Medicine

    Get PDF
    AbstractImage informatics encompasses the concept of extracting and quantifying information contained in image data. Scenes, what an image contains, come from many imager devices such as consumer electronics, medical imaging systems, 3D laser scanners, microscopes, or satellites. There is a marked increase in image informatics applications as there have been simultaneous advances in imaging platforms, data availability due to social media, and big data analytics. An area ready to take advantage of these developments is personalized medicine, the concept where the goal is tailor healthcare to the individual. Patient health data is computationally profiled against a large of pool of feature-rich data from other patients to ideally optimize how a physician chooses care. One of the daunting challenges is how to effectively utilize medical image data in personalized medicine. Reliable data analytics products require as much automation as possible, which is a difficulty for data like histopathology and radiology images because we require highly trained expert physicians to interpret the information. This review targets biomedical scientists interested in getting started on tackling image analytics. We present high level discussions of sample preparation and image acquisition; data formats; storage and databases; image processing; computer vision and machine learning; and visualization and interactive programming. Examples will be covered using existing open-source software tools such as ImageJ, CellProfiler, and IPython Notebook. We discuss how difficult real-world challenges faced by image informatics and personalized medicine are being tackled with open-source biomedical data and software
    • …
    corecore