12,070 research outputs found

    Data Mining Applications in Higher Education and Academic Intelligence Management

    Get PDF
    Higher education institutions are nucleus of research and future development acting in a competitive environment, with the prerequisite mission to generate, accumulate and share knowledge. The chain of generating knowledge inside and among external organizations (such as companies, other universities, partners, community) is considered essential to reduce the limitations of internal resources and could be plainly improved with the use of data mining technologies. Data mining has proven to be in the recent years a pioneering field of research and investigation that faces a large variety of techniques applied in a multitude of areas, both in business and higher education, relating interdisciplinary studies and development and covering a large variety of practice. Universities require an important amount of significant knowledge mined from its past and current data sets using special methods and processes. The ways in which information and knowledge are represented and delivered to the university managers are in a continuous transformation due to the involvement of the information and communication technologies in all the academic processes. Higher education institutions have long been interested in predicting the paths of students and alumni (Luan, 2004), thus identifying which students will join particular course programs (Kalathur, 2006), and which students will require assistance in order to graduate. Another important preoccupation is the academic failure among students which has long fuelled a large number of debates. Researchers (Vandamme et al., 2007) attempted to classify students into different clusters with dissimilar risks in exam failure, but also to detect with realistic accuracy what and how much the students know, in order to deduce specific learning gaps (Piementel & Omar, 2005). The distance and on-line education, together with the intelligent tutoring systems and their capability to register its exchanges with students (Mostow et al., 2005) present various feasible information sources for the data mining processes. Studies based on collecting and interpreting the information from several courses could possibly assist teachers and students in the web-based learning setting (Myller et al., 2002). Scientists (Anjewierden et al., 2007) derived models for classifying chat messages using data mining techniques, in order to offer learners real-time adaptive feedback which could result in the improvement of learning environments. In scientific literature there are some studies which seek to classify students in order to predict their final grade based on features extracted from logged data ineducational web-based systems (Minaei-Bidgoli & Punch, 2003). A combination of multiple classifiers led to a significant improvement in classification performance through weighting the feature vectors. The author’s research directions through the data mining practices consist in finding feasible ways to offer the higher education institutions’ managers ample knowledge to prepare new hypothesis, in a short period of time, which was formerly rigid or unachievable, in view of large datasets and earlier methods. Therefore, the aim is to put forward a way to understand the students’ opinions, satisfactions and discontentment in the each element of the educational process, and to predict their preference in certain fields of study, the choice in continuing education, academic failure, and to offer accurate correlations between their knowledge and the requirements in the labor market. Some of the most interesting data mining processes in the educational field are illustrated in the present chapter, in which the author adds own ideas and applications in educational issues using specific data mining techniques. The organization of this chapter is as follows. Section 2 offers an insight of how data mining processes are being applied in the large spectrum of education, presenting recent applications and studies published in the scientific literature, significant to the development of this emerging science. In Section 3 the author introduces his work through a number of new proposed directions and applications conducted over data collected from the students of the Babes-Bolyai University, using specific data mining classification learning and clustering methods. Section 4 presents the integration of data mining processes and their particular role in higher education issues and management, for the conception of an Academic Intelligence Management. Interrelated future research and plans are discussed as a conclusion in Section 5.data mining,data clustering, higher education, decision trees, C4.5 algorithm, k-means, decision support, academic intelligence management

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    On Cognitive Preferences and the Plausibility of Rule-based Models

    Get PDF
    It is conventional wisdom in machine learning and data mining that logical models such as rule sets are more interpretable than other models, and that among such rule-based models, simpler models are more interpretable than more complex ones. In this position paper, we question this latter assumption by focusing on one particular aspect of interpretability, namely the plausibility of models. Roughly speaking, we equate the plausibility of a model with the likeliness that a user accepts it as an explanation for a prediction. In particular, we argue that, all other things being equal, longer explanations may be more convincing than shorter ones, and that the predominant bias for shorter models, which is typically necessary for learning powerful discriminative models, may not be suitable when it comes to user acceptance of the learned models. To that end, we first recapitulate evidence for and against this postulate, and then report the results of an evaluation in a crowd-sourcing study based on about 3.000 judgments. The results do not reveal a strong preference for simple rules, whereas we can observe a weak preference for longer rules in some domains. We then relate these results to well-known cognitive biases such as the conjunction fallacy, the representative heuristic, or the recogition heuristic, and investigate their relation to rule length and plausibility.Comment: V4: Another rewrite of section on interpretability to clarify focus on plausibility and relation to interpretability, comprehensibility, and justifiabilit
    • …
    corecore