259 research outputs found

    A domain-specific language and matrix-free stencil code for investigating electronic properties of Dirac and topological materials

    Full text link
    We introduce PVSC-DTM (Parallel Vectorized Stencil Code for Dirac and Topological Materials), a library and code generator based on a domain-specific language tailored to implement the specific stencil-like algorithms that can describe Dirac and topological materials such as graphene and topological insulators in a matrix-free way. The generated hybrid-parallel (MPI+OpenMP) code is fully vectorized using Single Instruction Multiple Data (SIMD) extensions. It is significantly faster than matrix-based approaches on the node level and performs in accordance with the roofline model. We demonstrate the chip-level performance and distributed-memory scalability of basic building blocks such as sparse matrix-(multiple-) vector multiplication on modern multicore CPUs. As an application example, we use the PVSC-DTM scheme to (i) explore the scattering of a Dirac wave on an array of gate-defined quantum dots, to (ii) calculate a bunch of interior eigenvalues for strong topological insulators, and to (iii) discuss the photoemission spectra of a disordered Weyl semimetal.Comment: 16 pages, 2 tables, 11 figure

    A Quantitative Approach for Adopting Disaggregated Memory in HPC Systems

    Full text link
    Memory disaggregation has recently been adopted in data centers to improve resource utilization, motivated by cost and sustainability. Recent studies on large-scale HPC facilities have also highlighted memory underutilization. A promising and non-disruptive option for memory disaggregation is rack-scale memory pooling, where shared memory pools supplement node-local memory. This work outlines the prospects and requirements for adoption and clarifies several misconceptions. We propose a quantitative method for dissecting application requirements on the memory system from the top down in three levels, moving from general, to multi-tier memory systems, and then to memory pooling. We provide a multi-level profiling tool and LBench to facilitate the quantitative approach. We evaluate a set of representative HPC workloads on an emulated platform. Our results show that prefetching activities can significantly influence memory traffic profiles. Interference in memory pooling has varied impacts on applications, depending on their access ratios to memory tiers and arithmetic intensities. Finally, in two case studies, we show the benefits of our findings at the application and system levels, achieving 50% reduction in remote access and 13% speedup in BFS, and reducing performance variation of co-located workloads in interference-aware job scheduling.Comment: Accepted to SC23 (The International Conference for High Performance Computing, Networking, Storage, and Analysis 2023
    corecore