292 research outputs found

    Application Specific Customization and Scalability of Soft Multiprocessors

    Full text link

    Instruction-set architecture exploration of VLIW ASIPs using a genetic algorithm

    Full text link
    Genetic algorithms are commonly used for automatically solving complex design problem because exploration using genetic algorithms can consistently deliver good results when the algorithm is given a long enough run-time. However, the exploration time for problems with huge design spaces can be very long, often making exploration using a genetic algorithm practically infeasible. In this work, we present a genetic algorithm for exploring the instruction-set architecture of VLIW ASIPs and demonstrate its effectiveness by comparing it to two heuristic algorithms. We present several optimizations to the genetic algorithm configuration, and demonstrate how caching of intermediate compilation and simulation results can reduce the exploration time by an order of magnitude

    Accuracy-Guaranteed Fixed-Point Optimization in Hardware Synthesis and Processor Customization

    Get PDF
    RÉSUMÉ De nos jours, le calcul avec des nombres fractionnaires est essentiel dans une vaste gamme d’applications de traitement de signal et d’image. Pour le calcul numérique, un nombre fractionnaire peut être représenté à l’aide de l’arithmétique en virgule fixe ou en virgule flottante. L’arithmétique en virgule fixe est largement considérée préférable à celle en virgule flottante pour les architectures matérielles dédiées en raison de sa plus faible complexité d’implémentation. Dans la mise en œuvre du matériel, la largeur de mot attribuée à différents signaux a un impact significatif sur des métriques telles que les ressources (transistors), la vitesse et la consommation d'énergie. L'optimisation de longueur de mot (WLO) en virgule fixe est un domaine de recherche bien connu qui vise à optimiser les chemins de données par l'ajustement des longueurs de mots attribuées aux signaux. Un nombre en virgule fixe est composé d’une partie entière et d’une partie fractionnaire. Il y a une limite inférieure au nombre de bits alloués à la partie entière, de façon à prévenir les débordements pour chaque signal. Cette limite dépend de la gamme de valeurs que peut prendre le signal. Le nombre de bits de la partie fractionnaire, quant à lui, détermine la taille de l'erreur de précision finie qui est introduite dans les calculs. Il existe un compromis entre la précision et l'efficacité du matériel dans la sélection du nombre de bits de la partie fractionnaire. Le processus d'attribution du nombre de bits de la partie fractionnaire comporte deux procédures importantes: la modélisation de l'erreur de quantification et la sélection de la taille de la partie fractionnaire. Les travaux existants sur la WLO ont porté sur des circuits spécialisés comme plate-forme cible. Dans cette thèse, nous introduisons de nouvelles méthodologies, techniques et algorithmes pour améliorer l’implémentation de calculs en virgule fixe dans des circuits et processeurs spécialisés. La thèse propose une approche améliorée de modélisation d’erreur, basée sur l'arithmétique affine, qui aborde certains problèmes des méthodes existantes et améliore leur précision. La thèse introduit également une technique d'accélération et deux algorithmes semi-analytiques pour la sélection de la largeur de la partie fractionnaire pour la conception de circuits spécialisés. Alors que le premier algorithme suit une stratégie de recherche progressive, le second utilise une méthode de recherche en forme d'arbre pour l'optimisation de la largeur fractionnaire. Les algorithmes offrent deux options de compromis entre la complexité de calcul et le coût résultant. Le premier algorithme a une complexité polynomiale et obtient des résultats comparables avec des approches heuristiques existantes. Le second algorithme a une complexité exponentielle, mais il donne des résultats quasi-optimaux par rapport à une recherche exhaustive. Cette thèse propose également une méthode pour combiner l'optimisation de la longueur des mots dans un contexte de conception de processeurs configurables. La largeur et la profondeur des blocs de registres et l'architecture des unités fonctionnelles sont les principaux objectifs ciblés par cette optimisation. Un nouvel algorithme d'optimisation a été développé pour trouver la meilleure combinaison de longueurs de mots et d'autres paramètres configurables dans la méthode proposée. Les exigences de précision, définies comme l'erreur pire cas, doivent être respectées par toute solution. Pour faciliter l'évaluation et la mise en œuvre des solutions retenues, un nouvel environnement de conception de processeur a également été développé. Cet environnement, qui est appelé PolyCuSP, supporte une large gamme de paramètres, y compris ceux qui sont nécessaires pour évaluer les solutions proposées par l'algorithme d'optimisation. L’environnement PolyCuSP soutient l’exploration rapide de l'espace de solution et la capacité de modéliser différents jeux d'instructions pour permettre des comparaisons efficaces.----------ABSTRACT Fixed-point arithmetic is broadly preferred to floating-point in hardware development due to the reduced hardware complexity of fixed-point circuits. In hardware implementation, the bitwidth allocated to the data elements has significant impact on efficiency metrics for the circuits including area usage, speed and power consumption. Fixed-point word-length optimization (WLO) is a well-known research area. It aims to optimize fixed-point computational circuits through the adjustment of the allocated bitwidths of their internal and output signals. A fixed-point number is composed of an integer part and a fractional part. There is a minimum number of bits for the integer part that guarantees overflow and underflow avoidance in each signal. This value depends on the range of values that the signal may take. The fractional word-length determines the amount of finite-precision error that is introduced in the computations. There is a trade-off between accuracy and hardware cost in fractional word-length selection. The process of allocating the fractional word-length requires two important procedures: finite-precision error modeling and fractional word-length selection. Existing works on WLO have focused on hardwired circuits as the target implementation platform. In this thesis, we introduce new methodologies, techniques and algorithms to improve the hardware realization of fixed-point computations in hardwired circuits and customizable processors. The thesis proposes an enhanced error modeling approach based on affine arithmetic that addresses some shortcomings of the existing methods and improves their accuracy. The thesis also introduces an acceleration technique and two semi-analytical fractional bitwidth selection algorithms for WLO in hardwired circuit design. While the first algorithm follows a progressive search strategy, the second one uses a tree-shaped search method for fractional width optimization. The algorithms offer two different time-complexity/cost efficiency trade-off options. The first algorithm has polynomial complexity and achieves comparable results with existing heuristic approaches. The second algorithm has exponential complexity but achieves near-optimal results compared to an exhaustive search. The thesis further proposes a method to combine word-length optimization with application-specific processor customization. The supported datatype word-length, the size of register-files and the architecture of the functional units are the main target objectives to be optimized. A new optimization algorithm is developed to find the best combination of word-length and other customizable parameters in the proposed method. Accuracy requirements, defined as the worst-case error bound, are the key consideration that must be met by any solution. To facilitate evaluation and implementation of the selected solutions, a new processor design environment was developed. This environment, which is called PolyCuSP, supports necessary customization flexibility to realize and evaluate the solutions given by the optimization algorithm. PolyCuSP supports rapid design space exploration and capability to model different instruction-set architectures to enable effective compari

    BRISC-V: An Open-Source Architecture Design Space Exploration Toolbox

    Full text link
    In this work, we introduce a platform for register-transfer level (RTL) architecture design space exploration. The platform is an open-source, parameterized, synthesizable set of RTL modules for designing RISC-V based single and multi-core architecture systems. The platform is designed with a high degree of modularity. It provides highly-parameterized, composable RTL modules for fast and accurate exploration of different RISC-V based core complexities, multi-level caching and memory organizations, system topologies, router architectures, and routing schemes. The platform can be used for both RTL simulation and FPGA based emulation. The hardware modules are implemented in synthesizable Verilog using no vendor-specific blocks. The platform includes a RISC-V compiler toolchain to assist in developing software for the cores, a web-based system configuration graphical user interface (GUI) and a web-based RISC-V assembly simulator. The platform supports a myriad of RISC-V architectures, ranging from a simple single cycle processor to a multi-core SoC with a complex memory hierarchy and a network-on-chip. The modules are designed to support incremental additions and modifications. The interfaces between components are particularly designed to allow parts of the processor such as whole cache modules, cores or individual pipeline stages, to be modified or replaced without impacting the rest of the system. The platform allows researchers to quickly instantiate complete working RISC-V multi-core systems with synthesizable RTL and make targeted modifications to fit their needs. The complete platform (including Verilog source code) can be downloaded at https://ascslab.org/research/briscv/explorer/explorer.html.Comment: In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '19

    Further Specialization of Clustered VLIW Processors: A MAP Decoder for Software Defined Radio

    Get PDF
    Turbo codes are extensively used in current communications standards and have a promising outlook for future generations. The advantages of software defined radio, especially dynamic reconfiguration, make it very attractive in this multi-standard scenario. However, the complex and power consuming implementation of the maximum a posteriori (MAP) algorithm, employed by turbo decoders, sets hurdles to this goal. This work introduces an ASIP architecture for the MAP algorithm, based on a dual-clustered VLIW processor. It displays the good performance of application specific designs along with the versatility of processors, which makes it compliant with leading edge standards. The machine deals with multi-operand instructions in an innovative way, the fetching and assertion of data is serialized and the addressing is automatized and transparent for the programmer. The performance-area trade-off of the proposed architecture achieves a throughput of 8 cycles per symbol with very low power dissipation

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    SEPARATING INSTRUCTION FETCHES FROM MEMORY ACCESSES : ILAR (INSTRUCTION LINE ASSOCIATIVE REGISTERS)

    Get PDF
    Due to the growing mismatch between processor performance and memory latency, many dynamic mechanisms which are “invisible” to the user have been proposed: for example, trace caches and automatic pre-fetch units. However, these dynamic mechanisms have become inadequate due to implicit memory accesses that have become so expensive. On the other hand, compiler-visible mechanisms like SWAR (SIMD Within A Register) and LARs (Line Associative Registers) are potentially more effective at improving data access performance. This thesis investigates applying the same ideas to improve instruction access. ILAR (Instruction LARs) store instructions in wide registers. Instruction blocks are explicitly loaded into ILAR, using block compression to enhance memory bandwidth. The control flow of the program then refers to instructions directly by their position within an ILAR, rather than by lengthy memory addresses. Because instructions are accessed directly from within registers, there is no implicit instruction fetch from memory. This thesis proposes an instruction set architecture for ILAR, investigates a mechanism to load ILAR using the best available block compression algorithm and also develop hardware descriptions for both ILAR and a conventional memory cache model so that performance comparisons could be made on the instruction fetch stage

    Performance Aspects of Synthesizable Computing Systems

    Get PDF

    Data Collection and Utilization Framework for Edge AI Applications

    Get PDF
    As data being produced by IoT applications continues to explode, there is a growing need to bring computing power closer to the source of the data to meet the response time, power dissipation and cost goals of performance-critical applications in various domains like the Industrial Internet of Things (IIoT), Automated Driving, Medical Imaging or Surveillance among others. This paper proposes a data collection and utilization framework that allows runtime platform and application data to be sent to an edge and cloud system via data collection agents running close to the platform. Agents are connected to a cloud system able to train AI models to improve overall energy efficiency of an AI application executed on an edge platform. In the implementation part, we show the benefits of FPGA-based platform for the task of object detection. Furthermore, we show that it is feasible to collect relevant data from an FPGA platform, transmit the data to a cloud system for processing and receiving feedback actions to execute an edge AI application energy efficiently. As future work, we foresee the possibility to train, deploy and continuously improve a base model able to efficiently adapt the execution of edge applications
    • …
    corecore