26,707 research outputs found

    Model-Based Performance Anticipation in Multi-tier Autonomic Systems: Methodology and Experiments

    Get PDF
    http://www.thinkmind.org/download.php?articleid=netser_v3_n34_2010_3International audienceThis paper advocates for the introduction of perfor- mance awareness in autonomic systems. Our goal is to introduce performance prediction of a possible target configuration when a self-* feature is planning a system reconfiguration. We propose a global and partially automated process based on queues and queuing networks modelling. This process includes decomposing a distributed application into black boxes, identifying the queue model for each black box and assembling these models into a queuing network according to the candidate target configuration. Finally, performance prediction is performed either through simulation or analysis. This paper sketches the global process and focuses on the black box model identification step. This step is automated thanks to a load testing platform enhanced with a workload control loop. Model identification is based on statistical tests. The identified models are then used in performance prediction of autonomic system configurations. This paper describes the whole process through a practical experiment with a multi-tier application

    Model-Based Performance Anticipation in Multi-tier Autonomic Systems: Methodology and Experiments

    No full text
    http://www.thinkmind.org/download.php?articleid=netser_v3_n34_2010_3International audienceThis paper advocates for the introduction of perfor- mance awareness in autonomic systems. Our goal is to introduce performance prediction of a possible target configuration when a self-* feature is planning a system reconfiguration. We propose a global and partially automated process based on queues and queuing networks modelling. This process includes decomposing a distributed application into black boxes, identifying the queue model for each black box and assembling these models into a queuing network according to the candidate target configuration. Finally, performance prediction is performed either through simulation or analysis. This paper sketches the global process and focuses on the black box model identification step. This step is automated thanks to a load testing platform enhanced with a workload control loop. Model identification is based on statistical tests. The identified models are then used in performance prediction of autonomic system configurations. This paper describes the whole process through a practical experiment with a multi-tier application

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape

    Incorporating prediction models in the SelfLet framework: a plugin approach

    Full text link
    A complex pervasive system is typically composed of many cooperating \emph{nodes}, running on machines with different capabilities, and pervasively distributed across the environment. These systems pose several new challenges such as the need for the nodes to manage autonomously and dynamically in order to adapt to changes detected in the environment. To address the above issue, a number of autonomic frameworks has been proposed. These usually offer either predefined self-management policies or programmatic mechanisms for creating new policies at design time. From a more theoretical perspective, some works propose the adoption of prediction models as a way to anticipate the evolution of the system and to make timely decisions. In this context, our aim is to experiment with the integration of prediction models within a specific autonomic framework in order to assess the feasibility of such integration in a setting where the characteristics of dynamicity, decentralization, and cooperation among nodes are important. We extend an existing infrastructure called \emph{SelfLets} in order to make it ready to host various prediction models that can be dynamically plugged and unplugged in the various component nodes, thus enabling a wide range of predictions to be performed. Also, we show in a simple example how the system works when adopting a specific prediction model from the literature

    Self-* overload control for distributed web systems

    Full text link
    Unexpected increases in demand and most of all flash crowds are considered the bane of every web application as they may cause intolerable delays or even service unavailability. Proper quality of service policies must guarantee rapid reactivity and responsiveness even in such critical situations. Previous solutions fail to meet common performance requirements when the system has to face sudden and unpredictable surges of traffic. Indeed they often rely on a proper setting of key parameters which requires laborious manual tuning, preventing a fast adaptation of the control policies. We contribute an original Self-* Overload Control (SOC) policy. This allows the system to self-configure a dynamic constraint on the rate of admitted sessions in order to respect service level agreements and maximize the resource utilization at the same time. Our policy does not require any prior information on the incoming traffic or manual configuration of key parameters. We ran extensive simulations under a wide range of operating conditions, showing that SOC rapidly adapts to time varying traffic and self-optimizes the resource utilization. It admits as many new sessions as possible in observance of the agreements, even under intense workload variations. We compared our algorithm to previously proposed approaches highlighting a more stable behavior and a better performance.Comment: The full version of this paper, titled "Self-* through self-learning: overload control for distributed web systems", has been published on Computer Networks, Elsevier. The simulator used for the evaluation of the proposed algorithm is available for download at the address: http://www.dsi.uniroma1.it/~novella/qos_web

    Providing Transaction Class-Based QoS in In-Memory Data Grids via Machine Learning

    Get PDF
    Elastic architectures and the ”pay-as-you-go” resource pricing model offered by many cloud infrastructure providers may seem the right choice for companies dealing with data centric applications characterized by high variable workload. In such a context, in-memory transactional data grids have demonstrated to be particularly suited for exploiting advantages provided by elastic computing platforms, mainly thanks to their ability to be dynamically (re-)sized and tuned. Anyway, when specific QoS requirements have to be met, this kind of architectures have revealed to be complex to be managed by humans. Particularly, their management is a very complex task without the stand of mechanisms supporting run-time automatic sizing/tuning of the data platform and the underlying (virtual) hardware resources provided by the cloud. In this paper, we present a neural network-based architecture where the system is constantly and automatically re-configured, particularly in terms of computing resources
    • …
    corecore