7,440 research outputs found

    Operational readiness and airport transfer (ORAT) of Kuala Lumpur air traffic control centre (KL ATCC)

    Get PDF
    The study was conducted in order to find out the implementation of Operational Readiness and Airport Transfer (ORAT) towards the new Kuala Lumpur Air Traffic Controller Centre (KL ATCC) that will restructure the Kuala Lumpur Flight Information Region (KL FIR). The study adopted a qualitative case design and will only focus on the new KL ATCC that expected to finish at the end of Year 2020. The study aimed to interpret the procedure involving ORAT operation while at the same time to investigate on the Malaysia readiness of implementing ORAT and lastly to propose suitable model to implement ORAT effectively. This research was investigated by using qualitative research techniques which questionnaires are taken and adapted as data collection instrument. Descriptive statistics such percentage and graph were used to describe the research findings. The result of this study showed that the most crucial category that need to be emphasized in ORAT element for KL ATCC is System Readiness where it was the highest concerns compared to other elements. The study concluded that Malaysia is still at a worried stage in terms of implementing ORAT because all of the categories went above 50%. So Malaysia’s government can implement ORAT for any future project that will benefit on leading to project success

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Pedestrian flows in bounded domains with obstacles

    Full text link
    In this paper we systematically apply the mathematical structures by time-evolving measures developed in a previous work to the macroscopic modeling of pedestrian flows. We propose a discrete-time Eulerian model, in which the space occupancy by pedestrians is described via a sequence of Radon positive measures generated by a push-forward recursive relation. We assume that two fundamental aspects of pedestrian behavior rule the dynamics of the system: On the one hand, the will to reach specific targets, which determines the main direction of motion of the walkers; on the other hand, the tendency to avoid crowding, which introduces interactions among the individuals. The resulting model is able to reproduce several experimental evidences of pedestrian flows pointed out in the specialized literature, being at the same time much easier to handle, from both the analytical and the numerical point of view, than other models relying on nonlinear hyperbolic conservation laws. This makes it suitable to address two-dimensional applications of practical interest, chiefly the motion of pedestrians in complex domains scattered with obstacles.Comment: 25 pages, 9 figure

    Dioptra - A Data Generation Application for Indoor Positioning Systems

    Get PDF
    Indoor Positioning Systems (IPSs) based on different approaches and technologies have been proposed to support localization and navigation applications in indoor environments. The fair benchmarking and comparison of these IPSs is a difficult task since each IPS is usually evaluated in very specific and controlled conditions and using private data sets, not allowing reproducibility and direct comparison between the reported results and other competing solutions. In addition, testing and evaluating an IPS in the real world is difficult and time-consuming, especially when considering evaluation in multiple environments and conditions. To enhance IPS assessment, we propose Dioptra, an open access and user-friendly application to support research, development and evaluation of IPSs through simulation. To the best of our knowledge, Dioptra is the first application specially developed to generate synthetic datasets to promote reproducibility and fair benchmarking between IPSs.This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020 and the PhD fellowship PD/BD/137401/2018. J. Torres-Sospedra acknowledges funding from Programa Torres Quevedo (PTQ2018-009981)

    Remote Access and Computerized User Control of Robotic Micromanipulators

    Get PDF
    Nano- and micromanipulators are critical research tools in numerous fields including micro-manufacturing and disease study. Despite their importance, nano- and micromanipulation systems remain inaccessible to many groups due to price and lack of portability. An intuitive and remotely accessible manipulation system helps mitigate this access problem. Previously, optimal control hardware for single-probe manipulation and the effect of latency on user performance were not well understood. Remote access demands full computerization; graphical user interfaces with networking capabilities were developed to fulfill this requirement and allow the use of numerous hardware controllers. Virtual environments were created to simulate the use of a manipulator with full parametric control and measurement capabilities. Users completed simulated tasks with each device and were surveyed about their perceptions. User performance with a commercial manipulator controller was exceeded by performance with both a computer mouse and pen tablet. Latency was imposed within the virtual environment to study it’s effects and establish guidelines as to which latency ranges are acceptable for long-range remote manipulation. User performance began to degrade noticeably at 100 ms and severely at 400 ms and performance with the mouse degraded the least as latency increased. A computer vision system for analyzing carbon nanotube arrays was developed so the computation time could be compared to acceptable system latency. The system characterizes the arrays to a high degree of accuracy and most of the measurement types of obtainable fast enough for real-time analysis

    Genetic stigmergy: Framework and applications

    Get PDF
    Stigmergy has long been studied and recognized as an effective system for self-organization among social insects. Through the use of chemical agents known as pheromones, insect colonies are capable of complex collective behavior often beyond the scope of an individual agent. In an effort to develop human-made systems with the same robustness, scientists have created artificial analogues of pheromone-based stigmergy, but these systems often suffer from scalability and complexity issues due to the problems associated with mimicking the physics of pheromone diffusion. In this thesis, an alternative stigmergic framework called \u27Genetic Stigmergy\u27 is introduced. Using this framework, agents can indirectly share entire behavioral algorithms instead of pheromone traces that are limited in information content. The genetic constructs used in this framework allow for new avenues of research, including real-time evolution and adaptation of agents to complex environments. As a nascent test of its potential, experiments are performed using genetic stigmergy as an indirect communication framework for a simulated swarm of robots tasked with mapping an unknown environment. The robots are able to share their behavioral genes through environmentally distributed Radio-Frequency Identification cards. It was found that robots using a schema encouraging them to adopt lesser used behavioral genes (corresponding with novelty in exploration strategies) can generally cover more of an environment than agents who randomly switch their genes, but only if the environmental complexity is not too high. While the performance improvement is not statistically significant enough to clearly establish genetic stigmergy as a superior alternative to pheromonal-based artificial stigmergy, it is enough to warrant further research to develop its potential

    A Real Time Distributed Approach to Collision Avoidance for Industrial Manipulators

    Get PDF
    Robot interaction with the surrounding environment is an important and newsworthy problem in the context of industrial and service robotics. Collision avoidance gives the robot the ability to avoid contacts with objects around it, but most of the industrial controls implementing collision avoidance checks only the robot Tool Center Point (TCP) over the objects in the cell, without taking into account the shape of the tool, mounted on the robot flange. In this paper a novel approach is proposed, based on an accurate 3D simulation of the robotic cell. A distributed real time computing approach has been chosen to avoid any overloading of the robot controller. The simulator and the client application are implemented in a personal computer, connected via a TCP-IP socket to the robot controller, which hosts and manages the anti-collision policies, based on a proper speed override control. The real time effectiveness of the proposed approach has been confirmed by experimental tests, carried out for a real industrial setup in two different scenarios

    HLS: a framework for composing soft real-time schedulers

    Get PDF
    Journal ArticleHierarchical CPU scheduling has emerged as a way to (1) support applications with diverse scheduling requirements in open systems, and (2) provide load isolation between applications, users, and other resource principals. Most existing work on hierarchical scheduling has focused on systems that provide a fixed scheduling model: the schedulers in part or all of the hierarchy are specified in advance. In this paper we describe a system of guarantees that permits a general hierarchy of soft real-time schedulers-one that contains arbitrary scheduling algorithms at all points within the hierarchy-to be analyzed. This analysis results in deterministic guarantees for threads at the leaves of the hierarchy. We also describe the design, implementation, and performance evaluation of a system for supporting such a hierarchy in the Windows 2000 kernel. Finally, we show that complex scheduling behaviors can be created using small schedulers as components and describe the HLS programming environment
    • …
    corecore