16 research outputs found

    Improving the Slovak LVCSR performance by cluster-sensitive acoustic model retraining

    Get PDF
    In this paper, we present a cluster-dependent adaptation approach for HMM-based acoustic models. The proposed approach employs clustering techniques to group the original training utterances into clusters with predefined number. The clustered speech data are intended to adapt an initially pre-trained acoustic model to the specific cluster by reestimation based on the standard Baum-Welch procedure. The resulting model, adapted to the homogeneous data may markedly improve the baseline recognition rate, whereas the model complexity may be reduced. In the recognition step, the test samples are scored by each adapted model and the most accurate one is chosen. The proposed approach is thoroughly evaluated in Slovak triphone-based large vocabulary continuous speech recognition (LVCSR) system. The results prove that the cluster-sensitive retraining leads to significant improvements over the baseline reference system trained according to the conventional training procedure

    Low Resource Efficient Speech Retrieval

    Get PDF
    Speech retrieval refers to the task of retrieving the information, which is useful or relevant to a user query, from speech collection. This thesis aims to examine ways in which speech retrieval can be improved in terms of requiring low resources - without extensively annotated corpora on which automated processing systems are typically built - and achieving high computational efficiency. This work is focused on two speech retrieval technologies, spoken keyword retrieval and spoken document classification. Firstly, keyword retrieval - also referred to as keyword search (KWS) or spoken term detection - is defined as the task of retrieving the occurrences of a keyword specified by the user in text form, from speech collections. We make advances in an open vocabulary KWS platform using context-dependent Point Process Model (PPM). We further accomplish a PPM-based lattice generation framework, which improves KWS performance and enables automatic speech recognition (ASR) decoding. Secondly, the massive volumes of speech data motivate the effort to organize and search speech collections through spoken document classification. In classifying real-world unstructured speech into predefined classes, the wildly collected speech recordings can be extremely long, of varying length, and contain multiple class label shifts at variable locations in the audio. For this reason each spoken document is often first split into sequential segments, and then each segment is independently classified. We present a general purpose method for classifying spoken segments, using a cascade of language independent acoustic modeling, foreign-language to English translation lexicons, and English-language classification. Next, instead of classifying each segment independently, we demonstrate that exploring the contextual dependencies across sequential segments can provide large classification performance improvements. Lastly, we remove the need of any orthographic lexicon and instead exploit alternative unsupervised approaches to decoding speech in terms of automatically discovered word-like or phoneme-like units. We show that the spoken segment representations based on such lexical or phonetic discovery can achieve competitive classification performance as compared to those based on a domain-mismatched ASR or a universal phone set ASR

    Code-Switched Urdu ASR for Noisy Telephonic Environment using Data Centric Approach with Hybrid HMM and CNN-TDNN

    Full text link
    Call Centers have huge amount of audio data which can be used for achieving valuable business insights and transcription of phone calls is manually tedious task. An effective Automated Speech Recognition system can accurately transcribe these calls for easy search through call history for specific context and content allowing automatic call monitoring, improving QoS through keyword search and sentiment analysis. ASR for Call Center requires more robustness as telephonic environment are generally noisy. Moreover, there are many low-resourced languages that are on verge of extinction which can be preserved with help of Automatic Speech Recognition Technology. Urdu is the 10th10^{th} most widely spoken language in the world, with 231,295,440 worldwide still remains a resource constrained language in ASR. Regional call-center conversations operate in local language, with a mix of English numbers and technical terms generally causing a "code-switching" problem. Hence, this paper describes an implementation framework of a resource efficient Automatic Speech Recognition/ Speech to Text System in a noisy call-center environment using Chain Hybrid HMM and CNN-TDNN for Code-Switched Urdu Language. Using Hybrid HMM-DNN approach allowed us to utilize the advantages of Neural Network with less labelled data. Adding CNN with TDNN has shown to work better in noisy environment due to CNN's additional frequency dimension which captures extra information from noisy speech, thus improving accuracy. We collected data from various open sources and labelled some of the unlabelled data after analysing its general context and content from Urdu language as well as from commonly used words from other languages, primarily English and were able to achieve WER of 5.2% with noisy as well as clean environment in isolated words or numbers as well as in continuous spontaneous speech.Comment: 32 pages, 19 figures, 2 tables, preprin

    PHONOTACTIC AND ACOUSTIC LANGUAGE RECOGNITION

    Get PDF
    Práce pojednává o fonotaktickém a akustickém přístupu pro automatické rozpoznávání jazyka. První část práce pojednává o fonotaktickém přístupu založeném na výskytu fonémových sekvenci v řeči. Nejdříve je prezentován popis vývoje fonémového rozpoznávače jako techniky pro přepis řeči do sekvence smysluplných symbolů. Hlavní důraz je kladen na dobré natrénování fonémového rozpoznávače a kombinaci výsledků z několika fonémových rozpoznávačů trénovaných na různých jazycích (Paralelní fonémové rozpoznávání následované jazykovými modely (PPRLM)). Práce také pojednává o nové technice anti-modely v PPRLM a studuje použití fonémových grafů místo nejlepšího přepisu. Na závěr práce jsou porovnány dva přístupy modelování výstupu fonémového rozpoznávače -- standardní n-gramové jazykové modely a binární rozhodovací stromy. Hlavní přínos v akustickém přístupu je diskriminativní modelování cílových modelů jazyků a první experimenty s kombinací diskriminativního trénování a na příznacích, kde byl odstraněn vliv kanálu. Práce dále zkoumá různé druhy technik fúzi akustického a fonotaktického přístupu. Všechny experimenty jsou provedeny na standardních datech z NIST evaluaci konané v letech 2003, 2005 a 2007, takže jsou přímo porovnatelné s výsledky ostatních skupin zabývajících se automatickým rozpoznáváním jazyka. S fúzí uvedených technik jsme posunuli state-of-the-art výsledky a dosáhli vynikajících výsledků ve dvou NIST evaluacích.This thesis deals with phonotactic and acoustic techniques for automatic language recognition (LRE). The first part of the thesis deals with the phonotactic language recognition based on co-occurrences of phone sequences in speech. A thorough study of phone recognition as tokenization technique for LRE is done, with focus on the amounts of training data for phone recognizer and on the combination of phone recognizers trained on several language (Parallel Phone Recognition followed by Language Model - PPRLM). The thesis also deals with novel technique of anti-models in PPRLM and investigates into using phone lattices instead of strings. The work on phonotactic approach is concluded by a comparison of classical n-gram modeling techniques and binary decision trees. The acoustic LRE was addressed too, with the main focus on discriminative techniques for training target language acoustic models and on initial (but successful) experiments with removing channel dependencies. We have also investigated into the fusion of phonotactic and acoustic approaches. All experiments were performed on standard data from NIST 2003, 2005 and 2007 evaluations so that the results are directly comparable to other laboratories in the LRE community. With the above mentioned techniques, the fused systems defined the state-of-the-art in the LRE field and reached excellent results in NIST evaluations.

    Improving Eye Motion Sequence Recognition Using Electrooculography Based on Context-Dependent HMM

    Get PDF
    Eye motion-based human-machine interfaces are used to provide a means of communication for those who can move nothing but their eyes because of injury or disease. To detect eye motions, electrooculography (EOG) is used. For efficient communication, the input speed is critical. However, it is difficult for conventional EOG recognition methods to accurately recognize fast, sequentially input eye motions because adjacent eye motions influence each other. In this paper, we propose a context-dependent hidden Markov model- (HMM-) based EOG modeling approach that uses separate models for identical eye motions with different contexts. Because the influence of adjacent eye motions is explicitly modeled, higher recognition accuracy is achieved. Additionally, we propose a method of user adaptation based on a user-independent EOG model to investigate the trade-off between recognition accuracy and the amount of user-dependent data required for HMM training. Experimental results show that when the proposed context-dependent HMMs are used, the character error rate (CER) is significantly reduced compared with the conventional baseline under user-dependent conditions, from 36.0 to 1.3%. Although the CER increases again to 17.3% when the context-dependent but user-independent HMMs are used, it can be reduced to 7.3% by applying the proposed user adaptation method

    Malay articulation system for early screening diagnostic using hidden markov model and genetic algorithm

    Get PDF
    Speech recognition is an important technology and can be used as a great aid for individuals with sight or hearing disabilities today. There are extensive research interest and development in this area for over the past decades. However, the prospect in Malaysia regarding the usage and exposure is still immature even though there is demand from the medical and healthcare sector. The aim of this research is to assess the quality and the impact of using computerized method for early screening of speech articulation disorder among Malaysian such as the omission, substitution, addition and distortion in their speech. In this study, the statistical probabilistic approach using Hidden Markov Model (HMM) has been adopted with newly designed Malay corpus for articulation disorder case following the SAMPA and IPA guidelines. Improvement is made at the front-end processing for feature vector selection by applying the silence region calibration algorithm for start and end point detection. The classifier had also been modified significantly by incorporating Viterbi search with Genetic Algorithm (GA) to obtain high accuracy in recognition result and for lexical unit classification. The results were evaluated by following National Institute of Standards and Technology (NIST) benchmarking. Based on the test, it shows that the recognition accuracy has been improved by 30% to 40% using Genetic Algorithm technique compared with conventional technique. A new corpus had been built with verification and justification from the medical expert in this study. In conclusion, computerized method for early screening can ease human effort in tackling speech disorders and the proposed Genetic Algorithm technique has been proven to improve the recognition performance in terms of search and classification task

    Neural approaches to spoken content embedding

    Full text link
    Comparing spoken segments is a central operation to speech processing. Traditional approaches in this area have favored frame-level dynamic programming algorithms, such as dynamic time warping, because they require no supervision, but they are limited in performance and efficiency. As an alternative, acoustic word embeddings -- fixed-dimensional vector representations of variable-length spoken word segments -- have begun to be considered for such tasks as well. However, the current space of such discriminative embedding models, training approaches, and their application to real-world downstream tasks is limited. We start by considering ``single-view" training losses where the goal is to learn an acoustic word embedding model that separates same-word and different-word spoken segment pairs. Then, we consider ``multi-view" contrastive losses. In this setting, acoustic word embeddings are learned jointly with embeddings of character sequences to generate acoustically grounded embeddings of written words, or acoustically grounded word embeddings. In this thesis, we contribute new discriminative acoustic word embedding (AWE) and acoustically grounded word embedding (AGWE) approaches based on recurrent neural networks (RNNs). We improve model training in terms of both efficiency and performance. We take these developments beyond English to several low-resource languages and show that multilingual training improves performance when labeled data is limited. We apply our embedding models, both monolingual and multilingual, to the downstream tasks of query-by-example speech search and automatic speech recognition. Finally, we show how our embedding approaches compare with and complement more recent self-supervised speech models.Comment: PhD thesi

    Acoustic Modelling for Under-Resourced Languages

    Get PDF
    Automatic speech recognition systems have so far been developed only for very few languages out of the 4,000-7,000 existing ones. In this thesis we examine methods to rapidly create acoustic models in new, possibly under-resourced languages, in a time and cost effective manner. For this we examine the use of multilingual models, the application of articulatory features across languages, and the automatic discovery of word-like units in unwritten languages

    Rapid Generation of Pronunciation Dictionaries for new Domains and Languages

    Get PDF
    This dissertation presents innovative strategies and methods for the rapid generation of pronunciation dictionaries for new domains and languages. Depending on various conditions, solutions are proposed and developed. Starting from the straightforward scenario in which the target language is present in written form on the Internet and the mapping between speech and written language is close up to the difficult scenario in which no written form for the target language exists

    Automatic Speech Recognition for Documenting Endangered First Nations Languages

    Get PDF
    Automatic speech recognition (ASR) for low-resource languages is an active field of research. Over the past years with the advent of deep learning, impressive achievements have been reported using minimal resources. As many of the world’s languages are getting extinct every year, with every dying language we lose intellect, culture, values, and tradition which generally pass down for long generations. Linguists throughout the world have already initiated many projects on language documentation to preserve such endangered languages. Automatic speech recognition is a solution to accelerate the documentation process reducing the annotation time for field linguists as well as the overall cost of the project. A traditional speech recognizer is trained on thousands of hours of acoustic data and a phonetic dictionary that includes all words from the language. End-to-End ASR systems have shown dramatic improvement for major languages. Especially, recent advancement in self-supervised representation learning which takes advantage of large corpora of untranscribed speech data has become the state-of-the-art for speech recognition technology. However, for resource-constrained languages, the technology is not tested in depth. In this thesis, we explore both traditional methods of ASR and state-of-the-art end-to-end systems for modeling a critically endangered Athabascan language known as Upper Tanana. In our first approach, we investigate traditional models with a comparative study on feature selection and a performance comparison with deep hybrid models. With limited resources at our disposal, we build a working ASR system based on a grapheme-to-phoneme (G2P) phonetic dictionary. The acoustic model can also be used as a separate forced alignment tool for the automatic alignment of training data. The results show that the GMM-HMM methods outperform deep hybrid models in low-resource acoustic modeling. In our second approach, we propose using Domain-adapted Cross-lingual Speech Recognition (DA-XLSR) for an ASR system, developed over the wav2vec 2.0 framework that utilizes pretrained transformer models leveraging cross lingual data for building an acoustic representation. The proposed system uses a multistage transfer learning process in order to fine tune the final model. To supplement the limited data, we compile a data augmentation strategy combining six augmentation techniques. The speech model uses Connectionist Temporal Classification (CTC) for an alignment free training and does not require any pronunciation dictionary or language model. Experiments from the second approach demonstrate that it can outperform the best traditional or end-to-end models in terms of word error rate (WER) and produce a powerful utterance level transcription. On top of that, the augmentation strategy is tested on several end-to-end models, and it provides a consistent improvement in performance. While the best proposed model can currently reduce the WER significantly, it may still require further research to completely replace the need for human transcribers
    corecore