3,169 research outputs found

    Hybrid-dual-fourier tomographic algorithm for a fast three-dimensionial optical image reconstruction in turbid media

    Get PDF
    A reconstruction technique for reducing computation burden in the 3D image processes, wherein the reconstruction procedure comprises an inverse and a forward model. The inverse model uses a hybrid dual Fourier algorithm that combines a 2D Fourier inversion with a 1D matrix inversion to thereby provide high-speed inverse computations. The inverse algorithm uses a hybrid transfer to provide fast Fourier inversion for data of multiple sources and multiple detectors. The forward model is based on an analytical cumulant solution of a radiative transfer equation. The accurate analytical form of the solution to the radiative transfer equation provides an efficient formalism for fast computation of the forward model

    Distorted Born diffraction tomography: limits and applications to inverse the ultrasonic field scattered by an non-circular infinite elastic tube

    No full text
    International audienceThis study focuses on the application of ultrasonic diffraction tomography to noncircular 2D-cylindrical objects immersed in an infinite fluid. The distorted Born iterative method used to solve the inverse scattering problem be longs to the class of algebraic reconstruction algorithms. This method was developed to increase the order of application of the Born approximation (in the case of weakly-contrasted media) to higher orders. This yields quantitative in formation about the scatterer, such as the speed of sound and the attenuation. Quantitative ultrasonic imaging techniques of this kind are of great potential value in fields such as medicine, under water acoustics and non destructive testing

    A Framework for Directional and Higher-Order Reconstruction in Photoacoustic Tomography

    Get PDF
    Photoacoustic tomography is a hybrid imaging technique that combines high optical tissue contrast with high ultrasound resolution. Direct reconstruction methods such as filtered backprojection, time reversal and least squares suffer from curved line artefacts and blurring, especially in case of limited angles or strong noise. In recent years, there has been great interest in regularised iterative methods. These methods employ prior knowledge on the image to provide higher quality reconstructions. However, easy comparisons between regularisers and their properties are limited, since many tomography implementations heavily rely on the specific regulariser chosen. To overcome this bottleneck, we present a modular reconstruction framework for photoacoustic tomography. It enables easy comparisons between regularisers with different properties, e.g. nonlinear, higher-order or directional. We solve the underlying minimisation problem with an efficient first-order primal-dual algorithm. Convergence rates are optimised by choosing an operator dependent preconditioning strategy. Our reconstruction methods are tested on challenging 2D synthetic and experimental data sets. They outperform direct reconstruction approaches for strong noise levels and limited angle measurements, offering immediate benefits in terms of acquisition time and quality. This work provides a basic platform for the investigation of future advanced regularisation methods in photoacoustic tomography.Comment: submitted to "Physics in Medicine and Biology". Changes from v1 to v2: regularisation with directional wavelet has been added; new experimental tests have been include

    Multiscale photoacoustic microscopy and computed tomography

    Get PDF
    Photoacoustic tomography (PAT) is probably the fastest-growing area of biomedical imaging technology, owing to its capacity for high-resolution sensing of rich optical contrast in vivo at depths beyond the optical transport mean free path (~1 mm in human skin). Existing high-resolution optical imaging technologies, such as confocal microscopy and two-photon microscopy, have had a fundamental impact on biomedicine but cannot reach the penetration depths of PAT. By utilizing low ultrasonic scattering, PAT indirectly improves tissue transparency up to 1000-fold and consequently enables deeply penetrating functional and molecular imaging at high spatial resolution. Furthermore, PAT promises in vivo imaging at multiple length-scales; it can image subcellular organelles to organs with the same contrast origin — an important application in multiscale systems biology research

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1
    • …
    corecore