81 research outputs found

    Wavelet Methods for the Solutions of Partial and Fractional Differential Equations Arising in Physical Problems

    Get PDF
    The subject of fractional calculus has gained considerable popularity and importance during the past three decades or so, mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. It deals with derivatives and integrals of arbitrary orders. The fractional derivative has been occurring in many physical problems, such as frequency-dependent damping behavior of materials, motion of a large thin plate in a Newtonian fluid, creep and relaxation functions for viscoelastic materials, the PI D controller for the control of dynamical systems etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neutron point kinetic model, anomalous diffusion, Brownian motion, signal and image processing, fluid dynamics and material science are well described by differential equations of fractional order. Generally, nonlinear partial differential equations of fractional order are difficult to solve. So for the last few decades, a great deal of attention has been directed towards the solution (both exact and numerical) of these problems. The aim of this dissertation is to present an extensive study of different wavelet methods for obtaining numerical solutions of mathematical problems occurring in disciplines of science and engineering. This present work also provides a comprehensive foundation of different wavelet methods comprising Haar wavelet method, Legendre wavelet method, Legendre multi-wavelet methods, Chebyshev wavelet method, Hermite wavelet method and Petrov-Galerkin method. The intension is to examine the accuracy of various wavelet methods and their efficiency for solving nonlinear fractional differential equations. With the widespread applications of wavelet methods for solving difficult problems in diverse fields of science and engineering such as wave propagation, data compression, image processing, pattern recognition, computer graphics and in medical technology, these methods have been implemented to develop accurate and fast algorithms for solving integral, differential and integro-differential equations, especially those whose solutions are highly localized in position and scale. The main feature of wavelets is its ability to convert the given differential and integral equations to a system of linear or nonlinear algebraic equations, which can be solved by numerical methods. Therefore, our main focus in the present work is to analyze the application of wavelet based transform methods for solving the problem of fractional order partial differential equations. The introductory concept of wavelet, wavelet transform and multi-resolution analysis (MRA) have been discussed in the preliminary chapter. The basic idea of various analytical and numerical methods viz. Variational Iteration Method (VIM), Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM), First Integral Method (FIM), Optimal Homotopy Asymptotic Method (OHAM), Haar Wavelet Method, Legendre Wavelet Method, Chebyshev Wavelet Method and Hermite Wavelet Method have been presented in chapter 1. In chapter 2, we have considered both analytical and numerical approach for solving some particular nonlinear partial differential equations like Burgers’ equation, modified Burgers’ equation, Huxley equation, Burgers-Huxley equation and modified KdV equation, which have a wide variety of applications in physical models. Variational Iteration Method and Haar wavelet Method are applied to obtain the analytical and numerical approximate solution of Huxley and Burgers-Huxley equations. Comparisons between analytical solution and numerical solution have been cited in tables and also graphically. The Haar wavelet method has also been applied to solve Burgers’, modified Burgers’, and modified KdV equations numerically. The results thus obtained are compared with exact solutions as well as solutions available in open literature. Error of collocation method has been presented in this chapter. Methods like Homotopy Perturbation Method (HPM) and Optimal Homotopy Asymptotic Method (OHAM) are very powerful and efficient techniques for solving nonlinear PDEs. Using these methods, many functional equations such as ordinary, partial differential equations and integral equations have been solved. We have implemented HPM and OHAM in chapter 3, in order to obtain the analytical approximate solutions of system of nonlinear partial differential equation viz. the Boussinesq-Burgers’ equations. Also, the Haar wavelet method has been applied to obtain the numerical solution of BoussinesqBurgers’ equations. Also, the convergence of HPM and OHAM has been discussed in this chapter. The mathematical modeling and simulation of systems and processes, based on the description of their properties in terms of fractional derivatives, naturally leads to differential equations of fractional order and the necessity to solve such equations. The mathematical preliminaries of fractional calculus, definitions and theorems have been presented in chapter 4. Next, in this chapter, the Haar wavelet method has been analyzed for solving fractional differential equations. The time-fractional Burgers-Fisher, generalized Fisher type equations, nonlinear time- and space-fractional Fokker-Planck equations have been solved by using two-dimensional Haar wavelet method. The obtained results are compared with the Optimal Homotopy Asymptotic Method (OHAM), the exact solutions and the results available in open literature. Comparison of obtained results with OHAM, Adomian Decomposition Method (ADM), VIM and Operational Tau Method (OTM) has been demonstrated in order to justify the accuracy and efficiency of the proposed schemes. The convergence of two-dimensional Haar wavelet technique has been provided at the end of this chapter. In chapter 5, the fractional differential equations such as KdV-Burger-Kuramoto (KBK) equation, seventh order KdV (sKdV) equation and Kaup-Kupershmidt (KK) equation have been solved by using two-dimensional Legendre wavelet and Legendre multi-wavelet methods. The main focus of this chapter is the application of two-dimensional Legendre wavelet technique for solving nonlinear fractional differential equations like timefractional KBK equation, time-fractional sKdV equation in order to demonstrate the efficiency and accuracy of the proposed wavelet method. Similarly in chapter 6, twodimensional Chebyshev wavelet method has been implemented to obtain the numerical solutions of the time-fractional Sawada-Kotera equation, fractional order Camassa-Holm equation and Riesz space-fractional sine-Gordon equations. The convergence analysis has been done for these wavelet methods. In chapter 7, the solitary wave solution of fractional modified Fornberg-Whitham equation has been attained by using first integral method and also the approximate solutions obtained by optimal homotopy asymptotic method (OHAM) are compared with the exact solutions acquired by first integral method. Also, the Hermite wavelet method has been implemented to obtain approximate solutions of fractional modified Fornberg-Whitham equation. The Hermite wavelet method is implemented to system of nonlinear fractional differential equations viz. the fractional Jaulent-Miodek equations. Convergence of this wavelet methods has been discussed in this chapter. Chapter 8 emphasizes on the application of Petrov-Galerkin method for solving the fractional differential equations such as the fractional KdV-Burgers’ (KdVB) equation and the fractional Sharma-TassoOlver equation with a view to exhibit the capabilities of this method in handling nonlinear equation. The main objective of this chapter is to establish the efficiency and accuracy of Petrov-Galerkin method in solving fractional differential equtaions numerically by implementing a linear hat function as the trial function and a quintic B-spline function as the test function. Various wavelet methods have been successfully employed to numerous partial and fractional differential equations in order to demonstrate the validity and accuracy of these procedures. Analyzing the numerical results, it can be concluded that the wavelet methods provide worthy numerical solutions for both classical and fractional order partial differential equations. Finally, it is worthwhile to mention that the proposed wavelet methods are promising and powerful methods for solving fractional differential equations in mathematical physics. This work also aimed at, to make this subject popular and acceptable to engineering and science community to appreciate the universe of wonderful mathematics, which is in between classical integer order differentiation and integration, which till now is not much acknowledged, and is hidden from scientists and engineers. Therefore, our goal is to encourage the reader to appreciate the beauty as well as the usefulness of these numerical wavelet based techniques in the study of nonlinear physical system

    A Novel Approximation Approach for the Analytical Solution of the Flow of Micropolar Fluid Through a Permeable Channel

    Get PDF
    An attempt is made in this study to investigate the problem of micropolar fluid flow in a porous medium theoretically. Employing the Berman’s similarity solution, the model equations governing the flow is transformed into a set of nonlinear ordinary differential equation and solved using Temimi-Ansari method. Expressions for the velocity and micro-rotation profiles are obtained under the impressions of diverse parameters affecting the flow problem. Using symbolic computation software Mathematica, the nondimensional equations are solved numerically using the Keller Box scheme. Comparison between the analytical solution obtained by TAM and the numerical result are compared with results in literature to observe rapid convergence. Findings from the study showed in the presence o

    HYPERBOLIC TYPE SOLUTIONS FOR THE COUPLE BOITI-LEON-PEMPINELLI SYSTEM

    Get PDF
    In this paper, the (1/G')-expansion method is used to solve the coupled Boiti-Leon-Pempinelli (CBLP) system. The proposed method was used to construct hyperbolic type solutions of the nonlinear evolution equations. To asses the applicability and effectiveness of this method, some nonlinear evolution equations have been investigated in this study. It is shown that with the help of symbolic computation, the (1/G')-expansion method provides a powerful and straightforward mathematical tool for solving nonlinear partial differential equations

    Active Optimal Control of the KdV Equation Using the Variational Iteration Method

    Get PDF
    The optimal pointwise control of the KdV equation is investigated with an objective of minimizing a given performance measure. The performance measure is specified as a quadratic functional of the final state and velocity functions along with the energy due to open- and closed-loop controls. The minimization of the performance measure over the controls is subjected to the KdV equation with periodic boundary conditions and appropriate initial condition. In contrast to standard optimal control or variational methods, a direct control parameterization is used in this study which presents a distinct approach toward the solution of optimal control problems. The method is based on finite terms of Fourier series approximation of each time control variable with unknown Fourier coefficients and frequencies. He's variational iteration method for the nonlinear partial differential equations is applied to the problem and thus converting the optimal control of lumped parameter systems into a mathematical programming. A numerical simulation is provided to exemplify the proposed method

    Abundant optical soliton solutions for an integrable (2+1)-dimensional nonlinear conformable Schrödinger system

    Get PDF
    Abstract The analytical solutions of the integrable generalized ( 2 + 1 ) -dimensional nonlinear conformable Schrodinger (NLCS) system of equations was explored in this paper with the aid of three novel techniques which consist of ( G ′ / G ) -expansion method, generalized Riccati equation mapping method and the Kudryashov method in the conformable sense. We have discovered a new and more general variety of exact traveling wave solutions by using the proposed methods with a variety of soliton solutions of several structures. With several plots illustrating the behavior of dynamic shapes of the solutions, the findings are highly applicable and detailed the physical dynamic of the considered nonlinear system

    Exact closed form solutions of compound Kdv Burgers’ equation by using generalized (Gʹ/G) expansion method

    Get PDF
    In this investigation, the compound Korteweg-de Vries (Kd-V) Burgers equation with constant coefficients is considered as the model, which is used to describe the properties of ion-acoustic waves in plasma physics, and also applied for long wave propagation in nonlinear media with dispersion and dissipation. The aim of this paper to achieve the closed and dynamic closed form solutions of the compound KdV Burgers equation. We derived the completely new solutions to the considered model using the generalized (Gʹ/G)-expansion method. The newly obtained solutions are in form of hyperbolic and trigonometric functions, and rational function solutions with inverse terms of the trigonometric, hyperbolic functions. The dynamical representations of the obtained solutions are shown as the annihilation of three-dimensional shock waves, periodic waves, and multisoliton through their three dimensional and contour plots. The obtained solutions are also compared with previously exiting solutions with both analytically and numerically, and found that our results are preferable acceptable compared to the previous results.Publisher's Versio

    Nonlinear Waves and Dispersive Equations

    Get PDF
    The aim of the workshop was to discuss current developments in nonlinear waves and dispersive equations from a PDE based view. The talks centered around rough initial data, long time and global existence, perturbations of special solutions, and applications

    A New Efficient Technique for Solving Modified Chua's Circuit Model with a New Fractional Operator

    Get PDF
    Chua's circuit is an electronic circuit that exhibits nonlinear dynamics. In this paper, a new model for Chua's circuit is obtained by transforming the classical model of Chua's circuit into novel forms of various fractional derivatives. The new obtained system is then named fractional Chua's circuit model. The modified system is then analyzed by the optimal perturbation iteration method. Illustrations are given to show the applicability of the algorithms, and effective graphics are sketched for comparison purposes of the newly introduced fractional operatorsThe authors are grateful to the Spanish Government for Grant RTI2018-094336-B-I00 (MCIU/AEI/FEDER, UE) and to the Basque Government for Grant IT1207-1

    Numerical Solution of Airy Differential Equation by Using Haar Wavelet

    Get PDF
    Haar wavelet is exceedingly simple and optimized completely for computers, so that it can be used for solving ordinary differential equations and partial differential equations without a hassle. In this paper, numerical solutions of Airy differential equations have been obtained by using the Haar Wavelet Method . Comparisons with exact solutions make clear that the Haar Wavelet Method is a powerful candidate for solving the Airy differential equation. Moreover the use of Haar wavelets is found to be accurate, uncomplicated, speedy, adaptable and convenient with very small computation costs and the extra perk of being computationally attractive. Key Words: Orthogonal Wavelet, Airy Equation, Function Approximation, Operational Matri
    corecore