290 research outputs found

    A wireless body measurement system to study fatigue in multiple sclerosis

    Get PDF
    Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS), was developed to study fatigue in MS. It can continuously measure electrocardiogram, body-skin temperature, electromyogram and motions of feet. The goal of this study is to test the ability of distinguishing fatigued MS patients from healthy subjects by the use of FAMOS. This paper presents the realization of the measurement system including the design of both hardware and dedicated signal processing algorithms. Twenty-six participants including 17 MS patients with fatigue and 9 sex- and age-matched healthy controls were included in the study for continuous 24 h monitoring. The preliminary results show significant differences between fatigued MS patients and healthy controls. In conclusion, the FAMOS enables continuous data acquisition and estimation of multiple physiological and functional parameters. It provides a new, flexible and objective approach to study fatigue in MS, which can distinguish between fatigued MS patients and healthy controls. The usability and reliability of the FAMOS should however be further improved and validated through larger clinical trials

    Subject-independent modeling of sEMG signals for the motion of a single robot joint through GMM Modelization

    Get PDF
    This thesis evaluates the use of a probabilistic model, the Gaussian Mixture Model (GMM), trained through Electromyography (EMG) signals to estimate the bending angle of a single human joint. The GMM is created from the EMG signals collected by different people and the goal is to create a general model based on the data of different subjects. The model is then tested on new, unseen data. The goodness of the estimated data is evaluated by means of Normalized Mean Square Errorope

    Classification of EMG signals to control a prosthetic hand using time-frequesncy representations and Support Vector Machines

    Get PDF
    Myoelectric signals (MES) are viable control signals for externally-powered prosthetic devices. They may improve both the functionality and the cosmetic appearance of these devices. Conventional controllers, based on the signal\u27s amplitude features in the control strategy, lack a large number of controllable states because signals from independent muscles are required for each degree of freedom (DoF) of the device. Myoelectric pattern recognition systems can overcome this problem by discriminating different residual muscle movements instead of contraction levels of individual muscles. However, the lack of long-term robustness in these systems and the design of counter-intuitive control/command interfaces have resulted in low clinical acceptance levels. As a result, the development of robust, easy to use myoelectric pattern recognition-based control systems is the main challenge in the field of prosthetic control. This dissertation addresses the need to improve the controller\u27s robustness by designing a pattern recognition-based control system that classifies the user\u27s intention to actuate the prosthesis. This system is part of a cost-effective prosthetic hand prototype developed to achieve an acceptable level of functional dexterity using a simple to use interface. A Support Vector Machine (SVM) classifier implemented as a directed acyclic graph (DAG) was created. It used wavelet features from multiple surface EMG channels strategically placed over five forearm muscles. The classifiers were evaluated across seven subjects. They were able to discriminate five wrist motions with an accuracy of 91.5%. Variations of electrode locations were artificially introduced at each recording session as part of the procedure, to obtain data that accounted for the changes in the user\u27s muscle patterns over time. The generalization ability of the SVM was able to capture most of the variability in the data and to maintain an average classification accuracy of 90%. Two principal component analysis (PCA) frameworks were also evaluated to study the relationship between EMG recording sites and the need for feature space reduction. The dimension of the new feature set was reduced with the goal of improving the classification accuracy and reducing the computation time. The analysis indicated that the projection of the wavelet features into a reduced feature space did not significantly improve the accuracy and the computation time. However, decreasing the number of wavelet decomposition levels did lower the computational load without compromising the average signal classification accuracy. Based on the results of this work, a myoelectric pattern recognition-based control system that uses an SVM classifier applied to time-frequency features may be used to discriminate muscle contraction patterns for prosthetic applications

    Processing of sEMG signals for online motion of a single robot joint through GMM modelization

    Get PDF
    This thesis aims to explore the possibility to use EMG to train a GMM in order to estimate in realtime the bending angle of a single human joint. Extraction of features was performed with use of time-domain or frequency-domain transforms and with use of wavelet transform (WT) of which best configuration was investigated. WT was applied to signals of muscles of lower limb. A ROS based software written in C++ capable of interfacing with a humanoid robot was develope

    Discrimination of cardiac health and disease by assessment of heart rate variability: wavelet vs. fast Fourier transformation

    Get PDF
    The autonomic nervous system (ANS) modulation of the heart is of clinical importance because of its relevance to risk of life threatening arrhythmic events. Decomposition of heart rate variability (HRV) has been used to quantify ANS control of the heart. The traditional method for frequency analysis has involved the use of fast Fourier transformation (FFT). However, heart rate data typically violate assumptions of the FFT. Therefore, the assessment of HRV may benefit from other, potentially more suitable, mathematical approaches. For example, the discrete wavelet transformation (DWT) appears to have promise with respect to its ability to discriminate between healthy and diseased populations. Therefore, the purpose of this thesis was to examine the extent to which the FFT can discriminate between a control group and heart failure patients (CHF) in comparison to DWT. Seven CHF (mean +/- standard deviation, age: 51.9 +/- 17.6 yrs) and eight age-matched controls (49.5 +/- 17.9 yrs) were evaluated. HRV was evaluated during 5 minutes of supine spontaneous breathing (SB) and supine paced breathing (PB) (0.2Hz). The ECG data were sampled at 200 Hz, converted to heart rate tachograms, and subjected to frequency analysis via FFT and DWT. The FFT approach did not reveal group differences in HRV, while the DWT revealed group differences in LF/HF during SB (p\u3c0.05) and PB (p=0.053). With respect to breathing condition, only the FFT revealed that PB resulted in a decrease in low- to high-frequency ratios (p\u3c0.05), and an increase in standard deviation of normal R-R intervals. These results support further consideration of both methods of analysis, as they each appear to provide unique information about HRV

    Kinematic Analysis of Lower Limb Joint Asymmetry during Gait in People with Multiple Sclerosis

    Get PDF
    The majority of people with Multiple Sclerosis (pwMS), report lower limb motor dysfunc- tions, which may relevantly affect postural control, gait and a wide range of activities of daily living. While it is quite common to observe a different impact of the disease on the two limbs (i.e., one of them is more affected), less clear are the effects of such asymmetry on gait performance. The present retrospective cross-sectional study aimed to characterize the magnitude of interlimb asymmetry in pwMS, particularly as regards the joint kinematics, using parameters derived from angle-angle di- agrams. To this end, we analyzed gait patterns of 101 pwMS (55 women, 46 men, mean age 46.3, average Expanded Disability Status Scale (EDSS) score 3.5, range 1–6.5) and 81 unaffected individ- uals age- and sex-matched who underwent 3D computerized gait analysis carried out using an eight-camera motion capture system. Spatio-temporal parameters and kinematics in the sagittal plane at hip, knee and ankle joints were considered for the analysis. The angular trends of left and right sides were processed to build synchronized angle–angle diagrams (cyclograms) for each joint, and symmetry was assessed by computing several geometrical features such as area, orientation and Trend Symmetry. Based on cyclogram orientation and Trend Symmetry, the results show that pwMS exhibit significantly greater asymmetry in all three joints with respect to unaffected individ- uals. In particular, orientation values were as follows: 5.1 of pwMS vs. 1.6 of unaffected individuals at hip joint, 7.0 vs. 1.5 at knee and 6.4 vs. 3.0 at ankle (p < 0.001 in all cases), while for Trend Sym- metry we obtained at hip 1.7 of pwMS vs. 0.3 of unaffected individuals, 4.2 vs. 0.5 at knee and 8.5 vs. 1.5 at ankle (p < 0.001 in all cases). Moreover, the same parameters were sensitive enough to discriminate individuals of different disability levels. With few exceptions, all the calculated sym- metry parameters were found significantly correlated with the main spatio-temporal parameters of gait and the EDSS score. In particular, large correlations were detected between Trend Symmetry and gait speed (with rho values in the range of –0.58 to –0.63 depending on the considered joint, p < 0.001) and between Trend Symmetry and EDSS score (rho = 0.62 to 0.69, p < 0.001). Such results suggest not only that MS is associated with significantly marked interlimb asymmetry during gait but also that such asymmetry worsens as the disease progresses and that it has a relevant impact on gait performances

    Intelligent signal processing for digital healthcare monitoring

    Get PDF
    Ein gesunder Gang ist ein komplexer Prozess und erfordert ein Gleichgewicht zwischen verschiedenen neurophysiologischen Systemen im Körper und gilt als wesentlicher Indikator für den physischen und kognitiven Gesundheitszustand einer Person. Folglich würden Anwendungen im Bereich der Bioinformatik und des Gesundheitswesens erheblich von den Informationen profitieren, die sich aus einer längeren oder ständigen Überwachung des Gangs, der Gewohnheiten und des Verhaltens von Personen unter ihren natürlichen Lebensbedingungen und bei ihren täglichen Aktivitäten mit Hilfe intelligenter Geräte ergeben. Vergleicht man Trägheitsmess- und stationäre Sensorsysteme, so bieten erstere hervorragende Möglichkeiten für Ganganalyseanwendungen und bieten mehrere Vorteile wie geringe Größe, niedriger Preis, Mobilität und sind leicht in tragbare Systeme zu integrieren. Die zweiten gelten als der Goldstandard, sind aber teuer und für Messungen im Freien ungeeignet. Diese Arbeit konzentriert sich auf die Verbesserung der Zeit und Qualität der Gangrehabilitation nach einer Operation unter Verwendung von Inertialmessgeräten, indem sie eine neuartige Metrik zur objektiven Bewertung des Fortschritts der Gangrehabilitation in realen Umgebungen liefert und die Anzahl der verwendeten Sensoren für praktische, reale Szenarien reduziert. Daher wurden die experimentellen Messungen für eine solche Analyse in einer stark kontrollierten Umgebung durchgeführt, um die Datenqualität zu gewährleisten. In dieser Arbeit wird eine neue Gangmetrik vorgestellt, die den Rehabilitationsfortschritt anhand kinematischer Gangdaten von Aktivitäten in Innen- und Außenbereichen quantifiziert und verfolgt. In dieser Arbeit wird untersucht, wie Signalverarbeitung und maschinelles Lernen formuliert und genutzt werden können, um robuste Methoden zur Bewältigung von Herausforderungen im realen Leben zu entwickeln. Es wird gezeigt, dass der vorgeschlagene Ansatz personalisiert werden kann, um den Fortschritt der Gangrehabilitation zu verfolgen. Ein weiteres Thema dieser Arbeit ist die erfolgreiche Anwendung von Methoden des maschinellen Lernens auf die Ganganalyse aufgrund der großen Datenmenge, die von den tragbaren Sensorsystemen erzeugt wird. In dieser Arbeit wird das neuartige Konzept des ``digitalen Zwillings'' vorgestellt, das die Anzahl der verwendeten Wearable-Sensoren in einem System oder im Falle eines Sensorausfalls reduziert. Die Evaluierung der vorgeschlagenen Metrik mit gesunden Teilnehmern und Patienten unter Verwendung statistischer Signalverarbeitungs- und maschineller Lernmethoden hat gezeigt, dass die Einbeziehung der extrahierten Signalmerkmale in realen Szenarien robust ist, insbesondere für das Szenario mit Rehabilitations-Gehübungen in Innenräumen. Die Methodik wurde auch in einer klinischen Studie evaluiert und lieferte eine gute Leistung bei der Überwachung des Rehabilitationsfortschritts verschiedener Patienten. In dieser Arbeit wird ein Prototyp einer mobilen Anwendung zur objektiven Bewertung des Rehabilitationsfortschritts in realen Umgebungen vorgestellt
    • …
    corecore