13 research outputs found

    Multisecond ligand dissociation dynamics from atomistic simulations

    Full text link
    Coarse-graining of fully atomistic molecular dynamics simulations is a long-standing goal in order to allow the description of processes occurring on biologically relevant timescales. For example, the prediction of pathways, rates and rate-limiting steps in protein-ligand unbinding is crucial for modern drug discovery. To achieve the enhanced sampling, we first perform dissipation-corrected targeted molecular dynamics simulations, which yield free energy and friction profiles of the molecular process under consideration. In a second step, we use these fields to perform temperature-boosted Langevin simulations which account for the desired molecular kinetics occurring on multisecond timescales and beyond. Adopting the dissociation of solvated sodium chloride as well as trypsin-benzamidine and Hsp90-inhibitor protein-ligand complexes as test problems, we are able to reproduce rates from molecular dynamics simulation and experiments within a factor of 2-20, and dissociation constants within a factor of 1-4. Analysis of the friction profiles reveals that binding and unbinding dynamics are mediated by changes of the surrounding hydration shells in all investigated systems.Comment: This unedited earlier version of the manuscript may be downloaded for personal use only. The final manuscript was published in Nature Communications 11, 2918 (2020) as open access publication and is available at https://www.nature.com/articles/s41467-020-16655-

    Thirty years of molecular dynamics simulations on posttranslational modifications of proteins

    Full text link
    Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.Comment: 64 pages, 11 figure

    Protocol for identifying accurate collective variables in enhanced molecular dynamics simulations for the description of structural transformations in flexible metal-organic frameworks

    Get PDF
    Various kinds of flexibility have been observed in metal–organic frameworks, which may originate from the topology of the material or the presence of flexible ligands. The construction of free energy profiles describing the full dynamical behavior along the phase transition path is challenging since it is not trivial to identify collective variables able to identify all metastable states along the reaction path. In this work, a systematic three-step protocol to uniquely identify the dominant order parameters for structural transformations in flexible metal–organic frameworks and subsequently construct accurate free energy profiles is presented. Methodologically, this protocol is rooted in the time-structure based independent component analysis (tICA), a well-established statistical modeling technique embedded in the Markov state model methodology and often employed to study protein folding, that allows for the identification of the slowest order parameters characterizing the structural transformation. To ensure an unbiased and systematic identification of these order parameters, the tICA decomposition is performed based on information from a prior replica exchange (RE) simulation, as this technique enhances the sampling along all degrees of freedom of the system simultaneously. From this simulation, the tICA procedure extracts the order parameters—often structural parameters—that characterize the slowest transformations in the material. Subsequently, these order parameters are adopted in traditional enhanced sampling methods such as umbrella sampling, thermodynamic integration, and variationally enhanced sampling to construct accurate free energy profiles capturing the flexibility in these nanoporous materials. In this work, the applicability of this tICA-RE protocol is demonstrated by determining the slowest order parameters in both MIL-53(Al) and CAU-13, which exhibit a strongly different type of flexibility. The obtained free energy profiles as a function of this extracted order parameter are furthermore compared to the profiles obtained when adopting less-suited collective variables, indicating the importance of systematically selecting the relevant order parameters to construct accurate free energy profiles for flexible metal–organic frameworks, which is in correspondence with experimental findings. The method succeeds in mapping the full free energy surface in terms of appropriate collective variables for MOFs exhibiting linker flexibility. For CAU-13, we show the decreased stability of the closed pore phase by systematically adding adsorbed xylene molecules in the framework

    Computational methods to design biophysical experiments for the study of protein dynamics

    Get PDF
    In recent years, new software and automated instruments have enabled us to imagine autonomous or "self-driving" laboratories of the future. However, ways to design new scientific studies remain unexplored due to challenges such as minimizing associated time, labor, and expense of sample preparation and data acquisition. In the field of protein biophysics, computational simulations such as molecular dynamics and spectroscopy-based experiments such as double electron-electron resonance and Fluorescence resonance energy transfer techniques have emerged as critical experimental tools to capture protein dynamic behavior, a change in protein structure as a function of time which is important for their cellular functions. These techniques can lead to the characterization of key protein conformations and can capture protein motions over a diverse range of timescales. This work addresses the problem of the choice of probe positions in a protein, which residue-pairs should experimentalists choose for spectroscopy experiments. For this purpose, molecular dynamics simulations and Markov state models of protein conformational dynamics are utilized to rank sets of labeled residue-pairs in terms of their ability to capture the conformational dynamics of the protein. The applications of our experimental study design methodology called OptimalProbes on different types of proteins and experimental techniques are examined. In order to utilize this method for a previously uncharacterized protein, atomistic molecular dynamics simulations are performed to study a bacterial di/tri-peptide transporter a typical representative of the Major Facilitator Superfamily of membrane proteins. This was followed by ideal double electron-electron resonance experimental choice predictions based on the simulation data. The predicted choices are superior to the residue-pair choices made by experimentalists which failed to capture the slowest dynamical processes in the conformational ensemble obtained from our long timescale simulations. For molecular dynamics simulations based design of experimental studies to succeed both ensembles need to be comparable. Since this has not been the case for double electron-electron resonance distance distributions and molecular simulations, we explore possible reasons that can lead to mismatches between experiments and simulations in order to reconcile simulated ensembles with experimentally obtained distance traces. This work is one of the first studies towards integrating spectroscopy experiment design into a computational method systematically based on molecular simulations

    Studying protein-ligand interactions using a Monte Carlo procedure

    Get PDF
    [eng] Biomolecular simulations have been widely used in the study of protein-ligand interactions; comprehending the mechanisms involved in the prediction of binding affinities would have a significant repercussion in the pharmaceutical industry. Notwithstanding the intrinsic difficulty of sampling the phase space, hardware and methodological developments make computer simulations a promising candidate in the resolution of biophysically relevant problems. In this context, the objective of the thesis is the development of a protocol that permits studying protein-ligand interactions, in view to be applied in drug discovery pipelines. The author contributed to the rewriting PELE, our Monte Carlo sampling procedure, using good practices of software development. These involved testing, improving the readability, modularity, encapsulation, maintenance and version control, just to name a few. Importantly, the recoding resulted in a competitive cutting-edge software that is able to integrate new algorithms and platforms, such as new force fields or a graphical user interface, while being reliable and efficient. The rest of the thesis is built upon this development. At this point, we established a protocol of unbiased all-atom simulations using PELE, often combined with Markov (state) Models (MSM) to characterize the energy landscape exploration. In the thesis, we have shown that PELE is a suitable tool to map complex mechanisms in an accurate and efficient manner. For example, we successfully conducted studies of ligand migration in prolyl oligopeptidases and nuclear hormone receptors (NHRs). Using PELE, we could map the ligand migration and binding pathway in such complex systems in less than 48 hours. On the other hand, with this technique we often run batches of 100s of simulations to reduce the wall-clock time. MSM is a useful technique to join these independent simulations in a unique statistical model, as individual trajectories only need to characterize the energy landscape locally, and the global characterization can be extracted from the model. We successfully applied the combination of these two methodologies to quantify binding mechanisms and estimate the binding free energy in systems involving NHRs and tyorsinases. However, this technique represents a significant computational effort. To reduce the computational load, we developed a new methodology to overcome the sampling limitations caused by the ruggedness of the energy landscape. In particular, we used a procedure of iterative simulations with adaptive spawning points based on reinforcement learning ideas. This permits sampling binding mechanisms at a fraction of the cost, and represents a speedup of an order of magnitude in complex systems. Importantly, we show in a proof-of-concept that it can be used to estimate absolute binding free energies. Overall, we hope that the methodologies presented herein help streamline the drug design process.[spa] Las simulaciones biomoleculares se han usado ampliamente en el estudio de interacciones proteína-ligando. Comprender los mecanismos involucrados en la predicción de afinidades de unión tiene una gran repercusión en la industria farmacéutica. A pesar de las dificultades intrínsecas en el muestreo del espacio de fases, mejoras de hardware y metodológicas hacen de las simulaciones por ordenador un candidato prometedor en la resolución de problemas biofísicos con alta relevancia. En este contexto, el objetivo de la tesis es el desarrollo de un protocolo que introduce un estudio más eficiente de las interacciones proteína-ligando, con vistas a diseminar PELE, un procedimiento de muestreo de Monte Carlo, en el diseño de fármacos. Nuestro principal foco ha sido sobrepasar las limitaciones de muestreo causadas por la rugosidad del paisaje de energías, aplicando nuestro protocolo para hacer analsis detallados a nivel atomístico en receptores nucleares de hormonas, receptores acoplados a proteínas G, tirosinasas y prolil oligopeptidasas, en colaboración con una compañía farmacéutica y de varios laboratorios experimentales. Con todo ello, esperamos que las metodologías presentadas en esta tesis ayuden a mejorar el diseño de fármacos

    Reaction-diffusion systems in and out of equilibrium - methods for simulation and inference

    Get PDF
    Reaction-diffusion methods allow treatment of mesoscopic dynamic phenomena of soft condensed matter especially in the context of cellular biology. Macromolecules such as proteins consist of thousands of atoms, in reaction-diffusion models their interaction is described by effective dynamics with much fewer degrees of freedom. Reaction-diffusion methods can be categorized by the spatial and temporal length-scales involved and the amount of molecules, e.g. classical reaction kinetics are macroscopic equations for fast diffusion and many molecules described by average concentrations. The focus of this work however is interacting-particle reaction-dynamics (iPRD), which operates on length scales of few nanometers and time scales of nanoseconds, where proteins can be represented by coarse-grained beads, that interact via effective potentials and undergo reactions upon encounter. In practice these systems are often studied using time-stepping computer simulations. Reactions in such iPRD simulations are discrete events which rapidly interchange beads, e.g. in the scheme A + B C the two interacting particles A and B will be replaced by a C complex and vice-versa. Such reactions in combination with the interaction potentials pose two practical problems: 1. To achieve a well defined state of equilibrium, it is of vital importance that the reaction transitions obey microscopic reversiblity (detailed balance). 2. The mean rate of a bimolecular association reaction changes when the particles interact via a pair-potential. In this work the first question is answered both theoretically and algorithmically. Theoretically by formulating the state of equilibrium for a closed iPRD system and the requirements for detailed balance. Algorithmically by implementing the detailed balance reaction scheme in a publicly available simulator ReaDDy~2 for iPRD systems. The second question is answered by deriving concrete formulae for the macroscopic reaction rate as a function of the intrinsic parameters for the Doi reaction model subject to pair interactions. Especially this work addresses two important scenarios: Reversible reactions in a closed container and irreversible bimolecular reactions in the diffusion-influenced regime. A characteristic of reactions occurring in cellular environments is that the number of species involved in a physiological response is very large. Unveiling the network of necessary reactions is a task that can be addressed by a data-driven approach. In particular, analyzing observation data of such processes can be used to learn the important governing dynamics. This work gives an overview of the inference of dynamical reactive systems for the different reaction-diffusion models. For the case of reaction kinetics a method called Reactive Sparse Identification of Nonlinear Dynamics (Reactive SINDy) is developed that allows to obtain a sparse reaction network out of candidate reactions from time-series observations of molecule concentrations
    corecore