3,083 research outputs found

    New Challenges on Web Architectures for the Homogenization of the Heterogeneity of Smart Objects in the Internet of Things

    Get PDF
    Aquesta tesi tracta de dues de les noves tecnologies relacionades amb la Internet of Things (IoT) i la seva integració amb el camp de les Smart Grids (SGs); aquestes tecnologies son la Web of Things (WoT) i la Social Internet of Things (SIoT). La WoT és una tecnologia que s’espera que proveeixi d’un entorn escalable i interoperable a la IoT usant la infraestructura web existent, els protocols web y la web semàntica. També s’espera que la SIoT contribueixi a solucionar els reptes d’escalabilitat i capacitat de descobriment creant una xarxa social d’agents (objectes i humans). Per explorar la sinergia entre aquestes tecnologies, l’objectiu és el de proporcionar evidència pràctica i empírica, generalment en forma de prototips d’implementació i experimentació empírica. En relació amb la WoT i les SGs, s’ha creat un prototip per al Web of Energy (WoE) que té com a objectiu abordar els desafiaments presents en el domini les SGs. El prototip és capaç de proporcionar interoperabilitat i homogeneïtat entre diversos protocols. El disseny d’implementació es basa en el Model d’Actors, que també proporciona escalabilitat del prototip. L’experimentació mostra que el prototip pot gestionar la transmissió de missatges per a aplicacions de les SGs que requereixen que la comunicació es realitzi sota llindars de temps crítics. També es pren una altra direcció d’investigació similar, menys centrada en les SGs, però per a una gamma més àmplia de dominis d’aplicació. S’integra la descripció dels fluxos d’execució com a màquines d’estats finits utilitzant ontologies web (Resource Description Framework (RDF)) i metodologies de la WoT (les accions es realitzen basant-se en peticions Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Aquest flux d’execució, que també pot ser un plantilla per a permetre una configuració flexible en temps d’execució, s’implementa i interpreta com si fos (i mitjançant) un Virtual Object (VO). L’objectiu de la plantilla és ser reutilitzable i poder-se compartir entre múltiples desplegaments de la IoT dins el mateix domini d’aplicació. A causa de les tecnologies utilitzades, la solució no és adequada per a aplicacions de temps crític (llindar de temps relativament baix i rígid). No obstant això, és adequat per a aplicacions que no demanden resposta en un temps crític i que requereixen el desplegament de VOs similars en el que fa referència al flux d’execució. Finalment, el treball s’enfoca en una altra tecnologia destinada a millorar l’escalabilitat i la capacitat de descobriment en la IoT. La SIoT està sorgint com una nova estructura de la IoT que uneix els nodes a través de relacions significatives. Aquestes relacions tenen com a objectiu millorar la capacitat de descobriment; en conseqüència, millora la escalabilitat d’una xarxa de la IoT. En aquest treball s’aplica aquest nou paradigma per optimitzar la gestió de l’energia en el costat de la demanda a les SGs. L’objectiu és aprofitar les característiques de la SIoT per ajudar a la creació de Prosumer Community Groups (PCGs) (grups d’usuaris que consumeixen o produeixen energia) amb el mateix objectiu d’optimització en l’ús de l’energia. La sinergia entre la SIoT i les SGs s’ha anomenat Social Internet of Energy (SIoE). Per tant, amb la SIoE i amb el focus en un desafiament específic, s’estableix la base conceptual per a la integració entre la SIoT i les SGs. Els experiments inicials mostren resultats prometedors i aplanen el camí per a futures investigacions i avaluacions de la proposta. Es conclou que el WoT i la SIoT són dos paradigmes complementaris que nodreixen l’evolució de la propera generació de la IoT. S’espera que la propera generació de la IoT sigui un Multi-Agent System (MAS) generalitzat. Alguns investigadors ja estan apuntant a la Web i les seves tecnologies (per exemple, Web Semàntica, HTTP/S)—i més concretamente a la WoT — com a l’entorn que nodreixi a aquests agents. La SIoT pot millorar tant l’entorn com les relacions entre els agents en aquesta fusió. Les SGs també poden beneficiar-se dels avenços de la IoT, ja que es poden considerar com una aplicació específica d’aquesta última.  Esta tesis trata de dos de las novedosas tecnologías relacionadas con la Internet of Things (IoT) y su integración con el campo de las Smart Grids (SGs); estas tecnologías son laWeb of Things (WoT) y la Social Internet of Things (SIoT). La WoT es una tecnología que se espera que provea de un entorno escalable e interoperable a la IoT usando la infraestructura web existente, los protocolos web y la web semántica. También se espera que la SIoT contribuya a solucionar los retos de escalabilidad y capacidad de descubrimiento creando una red social de agentes (objetos y humanos). Para explorar la sinergia entre estas tecnologías, el objetivo es el de proporcionar evidencia práctica y empírica, generalmente en forma de prototipos de implementación y experimentación empírica. En relación con la WoT y las SGs, se ha creado un prototipo para la Web of Energy (WoE) que tiene como objetivo abordar los desafíos presentes en el dominio las SGs. El prototipo es capaz de proporcionar interoperabilidad y homogeneidad entre diversos protocolos. El diseño de implementación se basa en el Modelo de Actores, que también proporciona escalabilidad del prototipo. La experimentación muestra que el prototipo puede manejar la transmisión de mensajes para aplicaciones de las SGs que requieran que la comunicación se realice bajo umbrales de tiempo críticos. También se toma otra dirección de investigación similar, menos centrada en las SGs, pero para una gama más amplia de dominios de aplicación. Se integra la descripción de los flujos de ejecución como máquinas de estados finitos utilizando ontologías web (Resource Description Framework (RDF)) y metodologías de la WoT (las acciones se realizan basándose en peticiones Hyper-Text Transfer Protocol/Secure (HTTP/S) a Uniform Resource Locators (URLs)). Este flujo de ejecución, que también puede ser una plantilla para permitir una configuración flexible en tiempo de ejecución, se implementa e interpreta como si fuera (y a través de) un Virtual Object (VO). El objetivo de la plantilla es que sea reutilizable y se pueda compartir entre múltiples despliegues de la IoT dentro del mismo dominio de aplicación. Debido a las tecnologías utilizadas, la solución no es adecuada para aplicaciones de tiempo crítico (umbral de tiempo relativamente bajo y rígido). Sin embargo, es adecuado para aplicaciones que no demandan respuesta en un tiempo crítico y que requieren el despliegue de VOs similares en cuanto al flujo de ejecución. Finalmente, el trabajo se enfoca en otra tecnología destinada a mejorar la escalabilidad y la capacidad de descubrimiento en la IoT. La SIoT está emergiendo como una nueva estructura de la IoT que une los nodos a través de relaciones significativas. Estas relaciones tienen como objetivo mejorar la capacidad de descubrimiento; en consecuencia, mejora la escalabilidad de una red de la IoT. En este trabajo se aplica este nuevo paradigma para optimizar la gestión de la energía en el lado de la demanda en las SGs. El objetivo es aprovechar las características de la SIoT para ayudar en la creación de Prosumer Community Groups (PCGs) (grupos de usuarios que consumen o producen energía) con el mismo objetivo de optimización en el uso de la energía. La sinergia entre la SIoT y las SGs ha sido denominada Social Internet of Energy (SIoE). Por lo tanto, con la SIoE y con el foco en un desafío específico, se establece la base conceptual para la integración entre la SIoT y las SG. Los experimentos iniciales muestran resultados prometedores y allanan el camino para futuras investigaciones y evaluaciones de la propuesta. Se concluye que la WoT y la SIoT son dos paradigmas complementarios que nutren la evolución de la próxima generación de la IoT. Se espera que la próxima generación de la IoT sea un Multi-Agent System (MAS) generalizado. Algunos investigadores ya están apuntando a la Web y sus tecnologías (por ejemplo,Web Semántica, HTTP/S)—y más concretamente a la WoT — como el entorno que nutra a estos agentes. La SIoT puede mejorar tanto el entorno como las relaciones entre los agentes en esta fusión. Como un campo específico de la IoT, las SGs también pueden beneficiarse de los avances de la IoT.This thesis deals with two novel Internet of Things (IoT) technologies and their integration to the field of the Smart Grid (SG); these technologies are the Web of Things (WoT) and the Social Internet of Things (SIoT). The WoT is an enabling technology expected to provide a scalable and interoperable environment to the IoT using the existing web infrastructure, web protocols and the semantic web. The SIoT is expected to expand further and contribute to scalability and discoverability challenges by creating a social network of agents (objects and humans). When exploring the synergy between those technologies, we aim at providing practical and empirical evidence, usually in the form of prototype implementations and empirical experimentation. In relation to the WoT and SG, we create a prototype for the Web of Energy (WoE), that aims at addressing challenges present in the SG domain. The prototype is capable of providing interoperability and homogeneity among diverse protocols. The implementation design is based on the Actor Model, which also provides scalability in regards to the prototype. Experimentation shows that the prototype can handle the transmission of messages for time-critical SG applications. We also take another similar research direction less focused on the SG, but for a broader range of application domains. We integrate the description of flows of execution as Finite-State Machines (FSMs) using web ontologies (Resource Description Framework (RDF)) and WoT methodologies (actions are performed on the basis of calls Hyper Text Transfer Protocol/ Secure (HTTP/S) to a Uniform Resource Locator (URL)). This execution flow, which can also be a template to allow flexible configuration at runtime, is deployed and interpreted as (and through) a Virtual Object (VO). The template aims to be reusable and shareable among multiple IoT deployments within the same application domain. Due to the technologies used, the solution is not suitable for time-critical applications. Nevertheless, it is suitable for non-time-critical applications that require the deployment of similar VOs. Finally, we focus on another technology aimed at improving scalability and discoverability in IoT. The SIoT is emerging as a new IoT structure that links nodes through meaningful relationships. These relationships aim at improving discoverability; consequently, improving the scalability of an IoT network. We apply this new paradigm to optimize energy management at the demand side in a SG. Our objective is to harness the features of the SIoT to aid in the creation of Prosumer Community Group (PCG) (groups of energy users that consume or produce energy) with the same Demand Side Management (DSM) goal. We refer to the synergy between SIoT and SG as Social Internet of Energy (SIoE). Therefore, with the SIoE and focusing on a specific challenge, we set the conceptual basis for the integration between SIoT and SG. Initial experiments show promising results and pave the way for further research and evaluation of the proposal. We conclude that the WoT and the SIoT are two complementary paradigms that nourish the evolution of the next generation IoT. The next generation IoT is expected to be a pervasive Multi-Agent System (MAS). Some researchers are already pointing at the Web and its technologies (e.g. Semantic Web, HTTP/S) — and more concretely at the WoT — as the environment nourishing the agents. The SIoT can enhance both the environment and the relationships between agents in this fusion. As a specific field of the IoT, the SG can also benefit from IoT advancements

    European (energy) data exchange reference architecture 3.0

    Get PDF
    This is the third version of Data Exchange Reference Architecture – DERA 3.0. BRIDGE report on energy data exchange reference architecture aims at contributing to the discussion and practical steps towards truly interoperable and business process agnostic data exchange arrangements on European scale both inside energy domain and across different domains.DERA 3.0Recommendations related to the implementation of DERA:A. Leverage Smart Grid Architecture Model (SGAM) usage by completing it with data governance requirements, specifically from end-customer perspective, and map it to the reference architectures of other sectors (similar to the RAMI4.0 for industry – Reference Architecture Model Industrie 4.0; and CREATE-IoT 3D RAM for health – Reference Architecture Model of CREATE-IoT project), incl. for basic interoperability vocabulary with non-energy sectors.B. Facilitate European strategy, regulation (harmonisation of national regulations) and practical tools for cross-sector exchange of any type of both private data and public data, e.g. through reference models for data space, common data governance and data interoperability implementing acts.C. Ensure cooperation between appropriate associations, countries and sector representatives to work on cross-sector and cross-border data management by establishing European data cooperation agency. This involves ongoing empowering/restructuring of the Data Management WG of the BRIDGE Initiative to engage other sectors and extend cooperation with projects that are not EU-funded and with European Standardisation Organisations (CEN-CENELEC-ETSI).D. Harmonise the development, content and accessibility of data exchange business use cases for cross-sector domain through BRIDGE use case repository. Track tools that identify common features on use cases, e.g. interfaces between sectors, and enable the alignment with any potential peer repositories for other domains. Also, the use case repository must rely on the HEMRM with additional roles created by some projects or roles coming from other associations (related to another sector than the electricity/energy sector).E. Use BRIDGE use case repository for aligning the role selection. Harmonise data roles across electricity and other energy domains by developing HERM – Harmonised Energy Role Model and ensure access to model files. Look for consistency with other domains outside energy based on this HERM – cross-sectoral roles. Harmonised EnergyData EndpointsData SpaceConnectorData ProcessingStandard CommunicationProtocols& FormatsData HarmonizationData PersistanceVocabularyProviderCredentialManagerIdentityManagerMonitoring& OrchestrationData DiscoveryData IndexerLocal AI/ML ServicesDigital TwinsMarketplace BackendStandard CommunicationProtocols& FormatsMarketplace FrontendFederatedUse Cases and Business needsLocal Use Cases and Business needsEnergy RegulationEU Re-gulationActorsBusinessFunctionInformationComp.CommsNon-personal dataSecurity/ResilienceUserAcceptanceSovereigntyOpen SourceInteroperabilityLocalFederatedInteroperabilityTrustData valueGovernance9DATA MANAGEMENT WORKING GROUPEuropean (energy) data exchange reference architecture 3.0Role Model shall have clear implications and connections with data (space) roles such as data provider/consumer, service provider etc.F. Define and harmonise functional data processes for cross-sector domain, using common vocabulary, template and repository for respective use cases’ descriptions. Harmonisation of functional data processes for cross-sector data ecosystems including Vocabulary provider, Federated catalogue, Data quality, Data accounting processes, Clearing process (audit, logging, etc.) and Data tracking and provenance.G. Define and maintain a common reference semantic data model, and ensure access to its model files facilitating cross-sector data exchange, by leveraging existing data models like Common Information Model (CIM) of International Electrotechnical Commission (IEC) and ontologies like Smart Appliances Reference Ontology (SAREF).H. Develop cross-sector data models and profiles, with specific focus on private data exchange. Enable open access to model files whenever possible.I. Ensure protocol agnostic approach to cross-sector data exchange by selecting standardised and open ones.J. Ensure data format agnostic approach to cross-sector data exchange. The work done by projects like TDX-ASSIST and EU-SysFlex (using IEC CIM), and PLATOON (using SAREF) must be shared and made known to consolidate the approach in order to reach semantic interoperability. Metadata must also be taken into account.K. Promote business process agnostic DEPs (Data Exchange Platforms) and make these interoperable by developing APIs (Application Programming Interfaces) which enable for data providers and data users easy connection to any European DEP but also create the possibility whereby connecting to one DEP ensures data exchange with any other stakeholder in Europe. DEPs shall explore the integration of data space connectors towards their connectivity with other DEPs including cross-sector ones.L. Develop universal data applications which can serve any domain. Develop open data driven services that promote also cross-sector integration collectively available in application repositories.Possible next steps (“sub-actions”) for 2023/2024:➢ Release BRIDGE Federated Service Catalogue tool and associated process.➢ Release DERA interactive visualisation tool.➢ Follow up the implementation of DERA 3.0 in BRIDGE projects (mapping to DERA)➢ Update recommendations to comply with DERA 3.0.➢ Develop / enhance the “data role model”

    A methodology for cooperation between electric utilities and consumers for microgrid utilization based on a systems engineering approach

    Get PDF
    In recent years, the energy market has experienced important challenges in its structure and requirements of its actors, such as the necessity for more reliable electric service, energy efficiency, environmental care practices, and the incorporation of decentralized power generation based on distributed energy resources (DER). Given this context, microgrids offer several advantages to the grid and its actors. However, few microgrid projects have been implemented, and the participation of electric utilities is lower than the expected. Hence, this research explores how electric utility - customer interactions can accommodate mutual benefits for both parties through the proposal of a Microgrid Reference Methodology (MRM) that guides the cooperation of these actors for future microgrid projects. For this research, an understanding of the microgrid system was imperative; hence, the interests and concerns of electric utilities and industrial customers were determined via questionnaires, interviews, and a literature review of specialized articles, books, and magazines. In addition, the MRM development was based on different frameworks and concepts from the fields of Systems Engineering, System of Systems, Management Science, and Infrastructure Architectures. The proposed MRM uses a four-level microgrid system in which the delta (business) level is added to the other three levels that are traditionally analyzed in microgrid design and modeling. The steps and processes necessary to determine the actors in the system and their interests, goals, criteria, and factors are exemplified with a generic case study, in which the proposed MRM evaluates the impact of different alternatives on the objectives of both parties. In addition, it was possible to identify external factors that can be influenced by other actors, such as regulators and government, to incentivize the implementation of microgrid projects

    Development of Design Optimization for Smart Grid (DOfSG) Framework for Residential Energy Efficiency via Fuzzy Delphi Method (FDM) Approach

    Get PDF
    The smart grid revolution has benefited many sectors but the potential for design optimization among residential units has yet to be explored. Despite some researchers having negative perception of house design's association with the smart grid system, there is in fact potential for investigating design attribute optimisation aligned with the smart grid system. As electricity becomes a necessity of the 21st century society, residential dwellers are becoming more dependent on this indispensable source of energy. As such, this paper explains the development of a framework focusing on design optimization for residential units aligned to the smart grid system using the Fuzzy Delphi Method approach. It focuses on the significant smart grid components linked to the residential sector incorporating key design attributes for energy optimization purposes. The proposed framework denoted two main components of residential design optimization, depicted as indoor and outdoor parameters with its subsequent attributes further categorised into main and detailed components. Twelve design parameters were found to be substantial for the DOfSG development, intended to provide useful guide for aligning residential design towards the smart grid system in Malaysia
    corecore