405 research outputs found

    IMPROVED SUPPORT VECTOR MACHINE PERFORMANCE USING PARTICLE SWARM OPTIMIZATION IN CREDIT RISK CLASSIFICATION

    Get PDF
    In Classification using Support Vector Machine (SVM), each kernel has parameters that affect the classification accuracy results. This study examines the improvement of SVM performance by selecting parameters using Particle Swarm Optimization (PSO) on credit risk classification, the results of which are compared with SVM with random parameter selection. The classification performance is evaluated by applying the SVM classification to the Credit German benchmark credit data set and the private credit data set which is a credit data set issued from a local bank in North Sumatra. Although it requires a longer execution time to achieve optimal accuracy values, the SVM+PSO combination is quite effective and more systematic than trial and error techniques in finding SVM parameter values, so as to produce better accuracy. In general, the test results show that the RBF kernel is able to produce higher accuracy and f1-scores than linear and polynomial kernels. SVM classification with optimization using PSO can produce better accuracy than classification using SVM without optimization, namely the determination of parameters randomly. Credit data classification accuracy increased to 92.31%

    Credit risk evaluation modeling using evolutionary linear SVM classifiers and sliding window approach

    Get PDF
    AbstractThis paper presents a study on credit risk evaluation modeling using linear Support Vector Machines (SVM) classifiers, combined with evolutionary parameter selection using Genetic Algorithms and Particle Swarm Optimization, and sliding window approach. Discriminant analysis was applied for evaluation of financial instances and dynamic formation of bankruptcy classes. The possibilities of feature selection application were also researched by applying correlation-based feature subset evaluator. The research demonstrates a possibility to develop and apply an intelligent classifier based on original discriminant analysis method evaluation and shows that it might perform bankruptcy identification better than original model

    Particle swarm optimization for linear support vector machines based classifier selection

    Get PDF
    Particle swarm optimization is a metaheuristic technique widely applied to solve various optimization problems as well as parameter selection problems for various classification techniques. This paper presents an approach for linear support vector machines classifier optimization combining its selection from a family of similar classifiers with parameter optimization. Experimental results indicate that proposed heuristics can help obtain competitive or even better results compared to similar techniques and approaches and can be used as a solver for various classification tasks

    Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms: support vector regression forecast combinations

    Get PDF
    The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    KNN METHOD ON CREDIT RISK CLASSIFICATION WITH BINARY PARTICLE SWARM OPTIMIZATION BASED FEATURE SELECTION

    Get PDF
    Today, classification performance has become increasingly important for credit risk assessment for loss control and revenue maximization. Therefore, a classification method is required that can accurately and efficiently measure the credit risk level of prospective borrowers as the key to the credit approval process. This study contributes to the development of feature selection methods with SI algorithms that use binary representation, namely feature selection using PSO algorithms with binary representation or Binary Particle Swarm Optimization (BPSO) applied to credit risk classification, with classification evaluation using kNN classification method. The application of feature selection is done to eliminate excessive features, thus reducing the number of features, improving the accuracy of the model, and reducing running time. The test results showed that KNN's best accuracy of 76.40%, can be improved by bpso-based selection feature with better accuracy of 88.70%, with an accuracy improvement of 13.35%. This test showed that bpso-based selection feature technique successfully improved the accuracy of KNN classification on credit risk classification

    Improved credit scoring model using XGBoost with Bayesian hyper-parameter optimization

    Get PDF
    Several credit-scoring models have been developed using ensemble classifiers in order to improve the accuracy of assessment. However, among the ensemble models, little consideration has been focused on the hyper-parameters tuning of base learners, although these are crucial to constructing ensemble models. This study proposes an improved credit scoring model based on the extreme gradient boosting (XGB) classifier using Bayesian hyper-parameters optimization (XGB-BO). The model comprises two steps. Firstly, data pre-processing is utilized to handle missing values and scale the data. Secondly, Bayesian hyper-parameter optimization is applied to tune the hyper-parameters of the XGB classifier and used to train the model. The model is evaluated on four widely public datasets, i.e., the German, Australia, lending club, and Polish datasets. Several state-of-the-art classification algorithms are implemented for predictive comparison with the proposed method. The results of the proposed model showed promising results, with an improvement in accuracy of 4.10%, 3.03%, and 2.76% on the German, lending club, and Australian datasets, respectively. The proposed model outperformed commonly used techniques, e.g., decision tree, support vector machine, neural network, logistic regression, random forest, and bagging, according to the evaluation results. The experimental results confirmed that the XGB-BO model is suitable for assessing the creditworthiness of applicants

    Credit risk modeling: A comparative analysis of artificial and deep neural networks

    Get PDF
    Credit risk assessment plays a major role in the banks and financial institutions to prevent counterparty risk failure. One of the primary capabilities of a robust risk management system must be detecting the risks earlier, though many of the bank systems today lack this key capability which leads to further losses (MGI, 2017). In searching for an improved methodology to detect such credit risk and increasing the lacking capabilities earlier, a comparative analysis between Deep Neural Network (DNN) and machine learning techniques such as Support Vector Machines (SVM), K-Nearest Neighbours (KNN) and Artificial Neural Network (ANN) were conducted. The Deep Neural Network used in this study consists of six layers of neurons. Further, sampling techniques such as SMOTE, SVM-SMOTE, RUS, and All-KNN to make the imbalanced dataset a balanced one were also applied. Using supervised learning techniques, the proposed DNN model was able to achieve an accuracy of 82.18% with a ROC score of 0.706 using the RUS sampling technique. The All KNN sampling technique was capable of achieving the maximum true positives in two different models. Using the proposed approach, banks and credit check institutions can help prevent major losses occurring due to counterparty risk failure.credit riskdeep neural networkartificial neural networksupport vector machinessampling technique

    Credit Risk Evaluation as a Service (CREaaS) based on ANN and Machine Learning

    Get PDF
    Credit risk evaluation is the major concern of the banks and financial institutions since there is a huge competition between them to find the minimum risk and maximum amount of credits supplied. Comparing with the other services of the banks like credit cards, value added financial services, account management and money transfers, the majority of their capitals has been used for various types of credits. Even there is a competition among them for finding and serving the low risk customers, these institution shares limited information about the risk and risk related information for the common usage. The purpose of this paper is to explain the service oriented architecture and the decision model for those banks which shares the information about their customers and makes potential customer analysis. Credit Risk Evaluation as a Service system, provides a novel service based information retrieval system submitted by the banks and institutions. The system itself has a sustainable, supervised learning with continuous improvement with the new data submitted. As a main concern of conflict of interest between the institutions trade and privacy information secured for internal usage and full encrypted data gathering and as well as storing architecture with encryption. Proposed system architecture and model is designed mainly for the commercial credits for SME’s due to the complexity and variety of other credits
    • …
    corecore