976 research outputs found

    Modified Newton’s method in the leapfrog method for mobile robot path planning

    Get PDF
    The problem of determining an optimal trajectory for an autonomous mobile robot in an environment with obstacles is considered. The Leapfrog approach is used to solve the ensuing system of equations derived from the first-order optimality conditions of the Pontryagin’s Minimum Principle. A comparison is made between a case in which the classical Newton Method and the Modified Newton Method are used in the shooting method for solving the two-point boundary value problem in the inner loop of the Leapfrog algorithm. It can be observed that with this modification there is an improvement in the convergence rate of the Leapfrog algorithm in general.http://www.springer.comseries/111562019-03-20hj2018Mathematics and Applied Mathematic

    Convergence analysis of leapfrog for geodesics

    Get PDF
    Geodesics are of fundamental interest in mathematics, physics, computer science, and many other subjects. The so-called leapfrog algorithm was proposed in [L. Noakes, J. Aust. Math. Soc., 65 (1998), pp. 37-50] (but not named there as such) to find geodesics joining two given points x0 and x1 on a path-connected complete Riemannian manifold. The basic idea is to choose some junctions between x0 and x1 that can be joined by geodesics locally and then adjust these junctions. It was proved that the sequence of piecewise geodesics { k}k ≥ 1 generated by this algorithm converges to a geodesic joining x0 and x1. The present paper investigates leapfrog\u27s convergence rate i,n of ith junction depending on the manifold M. A relationship is found with the maximal root n of a polynomial of degree n-3, where n (n \u3e 3) is the number of geodesic segments. That is, the minimal i,n is upper bounded by n(1 + c+), where c+ is a sufficiently small positive constant depending on the curvature of the manifold M. Moreover, we show that n increases as n increases. These results are illustrated by implementing leapfrog on two Riemannian manifolds: the unit 2-sphere and the manifold of all 2 × 2 symmetric positive definite matrices

    Learning Generalized Relational Heuristic Networks for Model-Agnostic Planning

    Full text link
    Computing goal-directed behavior (sequential decision-making, or planning) is essential to designing efficient AI systems. Due to the computational complexity of planning, current approaches rely primarily upon hand-coded symbolic domain models and hand-coded heuristic-function generators for efficiency. Learned heuristics for such problems have been of limited utility as they are difficult to apply to problems with objects and object quantities that are significantly different from those in the training data. This paper develops a new approach for learning generalized heuristics in the absence of symbolic domain models using deep neural networks that utilize an input predicate vocabulary but are agnostic to object names and quantities. It uses an abstract state representation to facilitate data efficient, generalizable learning. Empirical evaluation on a range of benchmark domains show that in contrast to prior approaches, generalized heuristics computed by this method can be transferred easily to problems with different objects and with object quantities much larger than those in the training data.Comment: Submitted to NIPS 2020, 11 pages, 3 figure

    Focal Spot, Winter 2005/2006

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1101/thumbnail.jp

    On efficient temporal subgraph query processing

    Get PDF

    Viability of Numerical Full-Wave Techniques in Telecommunication Channel Modelling

    Get PDF
    In telecommunication channel modelling the wavelength is small compared to the physical features of interest, therefore deterministic ray tracing techniques provide solutions that are more efficient, faster and still within time constraints than current numerical full-wave techniques. Solving fundamental Maxwell's equations is at the core of computational electrodynamics and best suited for modelling electrical field interactions with physical objects where characteristic dimensions of a computing domain is on the order of a few wavelengths in size. However, extreme communication speeds, wireless access points closer to the user and smaller pico and femto cells will require increased accuracy in predicting and planning wireless signals, testing the accuracy limits of the ray tracing methods. The increased computing capabilities and the demand for better characterization of communication channels that span smaller geographical areas make numerical full-wave techniques attractive alternative even for larger problems. The paper surveys ways of overcoming excessive time requirements of numerical full-wave techniques while providing acceptable channel modelling accuracy for the smallest radio cells and possibly wider. We identify several research paths that could lead to improved channel modelling, including numerical algorithm adaptations for large-scale problems, alternative finite-difference approaches, such as meshless methods, and dedicated parallel hardware, possibly as a realization of a dataflow machine
    corecore