103 research outputs found

    Three-dimensional interactive maps: theory and practice

    Get PDF

    KINETIC ALGORITHMS FOR HARBOUR MANAGEMENT

    Get PDF

    Path planning and collision avoidance for autonomous surface vehicles II: a comparative study of algorithms

    Get PDF
    Artificial intelligence is an enabling technology for autonomous surface vehicles, with methods such as evolutionary algorithms, artificial potential fields, fast marching methods, and many others becoming increasingly popular for solving problems such as path planning and collision avoidance. However, there currently is no unified way to evaluate the performance of different algorithms, for example with regard to safety or risk. This paper is a step in that direction and offers a comparative study of current state-of-the art path planning and collision avoidance algorithms for autonomous surface vehicles. Across 45 selected papers, we compare important performance properties of the proposed algorithms related to the vessel and the environment it is operating in. We also analyse how safety is incorporated, and what components constitute the objective function in these algorithms. Finally, we focus on comparing advantages and limitations of the 45 analysed papers. A key finding is the need for a unified platform for evaluating and comparing the performance of algorithms under a large set of possible real-world scenarios

    통합형 무인 수상선-케이블-수중선 시스템의 다물체동역학 거동 및 제어

    Get PDF
    Underwater exploration is becoming more and more important, since a vast range of unknown resources in the deep ocean remain undeveloped. This dissertation thus presents a modeling of the coupled dynamics of an Unmanned Surface Vehicle (USV) system with an Underwater Vehicles (UV) connected by an underwater cable (UC). The complexity of this multi-body dynamics system and ocean environments is very difficult to model. First, for modeling this, dynamics analysis was performed on each subsystem and further total coupled system dynamics were studied. The UV which is towed by a UC is modeled with 6-DOF equations of motion that reflects its hydrodynamic characteristic was studied. The 4th-order Runge–Kutta numerical method was used to analyze the motion of the USV with its hydrodynamic coefficients which were obtained through experiments and from the literature. To analyze the effect of the UC, the complicated nonlinear and coupled UC dynamics under currents forces, the governing equations of the UC dynamics are established based on the catenary equation method, then it is solved by applying the shooting method. The new formulation and solution of the UC dynamics yields the three dimensional position and forces of the UC end point under the current forces. Also, the advantage of the proposed method is that the catenary equations using shooting method can be solved in real time such that the calculated position and forces of UC according to time can be directly utilized to calculate the UV motion. The proposed method offers advantages of simple formulation, convenient use, and fast calculation time with exact result. Some simple numerical simulations were conducted to observe the dynamic behaviors of AUV with cable effects. The simulations results clearly reveal that the UC can greatly influence the motions of the vehicles, especially on the UV motions. Based on both the numerical model and simulation results developed in the dissertation, we may offer some valuable information for the operation of the UV and USV. Secondly, for the design controller, a PD controller and its application to automatic berthing control of USV are also studied. For this, a nonlinear mathematical model for the maneuvering of USV in the presence of environmental forces was firstly established. Then, in order to control rudder and propeller during automatic berthing process, a PD control algorithm is applied. The algorithm consists of two parts, the forward velocity control and heading angle control. The control algorithm was designed based on the longitudinal and yaw dynamic models of USV. The desired heading angle was obtained by the so-called “Line of Sight” method. To support the validity of the proposed method, the computer simulations of automatic USV berthing are carried out. The results of simulation showed good performance of the developed berthing control system. Also, a hovering-type AUV equipped with multiple thrusters should maintain the specified position and orientation in order to perform given tasks by applying a dynamic positioning (DP) system. Besides, the control allocation algorithm based on a scaling factor is presented for distributing the forces required by the control law onto the available set of actuators in the most effective and energy efficient way. Thus, it is necessary for the robust control algorithm to conduct successfully given missions in spite of a model uncertainty and a disturbance. In this dissertation, the robust DP control algorithm based on a sliding mode theory is also addressed to guarantee the stability and better performance despite the model uncertainty and disturbance of current and cable effects. Finally, a series of simulations are conducted to verify the availability of the generated trajectories and performance of the designed robust controller. Thirdly, for the navigation of UV, a method for designing the path tracking controller using a Rapidly-exploring Random Trees (RRT) algorithm is proposed. The RRT algorithm is firstly used for the generation of collision free waypoints. Next, the unnecessary waypoints are removed by a simple path pruning algorithm generating a piecewise linear path. After that, a path smoothing algorithm utilizing cubic Bezier spiral curves to generate a continuous curvature path that satisfies the minimum radius of curvature constraint of underwater is implemented. The angle between two waypoints is the only information required for the generation of the continuous curvature path. In order to underwater vehicle follow the reference path, the path tracking controller using the global Sliding Mode Control (SMC) approach is designed. To verify the performance of the proposed algorithm, some simulation results are performed. Simulation results showed that the RRT algorithm could be applied to generate an optimal path in a complex ocean environment with multiple obstacles.Acknowledgement .................................................................................................. vi Abstract……. ....................................................................................... ………….viii Nomenclature ....................................................................................................... xvi List of Abbreviations ........................................................................................... xxi List of Tables ...................................................................................................... xxiii List of Figures ..................................................................................................... xxiv Chapter 1: Introduction ......................................................................................... 1 1.1 Background .................................................................................................. 1 1.1.1 Unmanned Surface Vehicles (USVs) ...................................................... 1 1.1.2 Umbilical Cable ....................................................................................... 4 1.1.3 Unmanned Underwater Vehicles (UUVs) ............................................... 5 1.1.4 Literature on Modeling of Marine Vehicles ............................................ 9 1.1.5 Literature on Control and Guidance of Marine Vehicles ...................... 11 1.2 Our System Architecture ........................................................................... 12 1.3 Motivation ................................................................................................. 13 1.4 Contribution ............................................................................................... 16 1.5 Publications Associated to the Dissertation .............................................. 17 1.6 Structure of the Dissertation ...................................................................... 18 Chapter 2: Mathematical Model of Unmanned Surface Vehicle (USV) ......... 20 2.1 Basic Assumptions .................................................................................... 20 2.2 Three Coordinate Systems ......................................................................... 20 2.3 Variable Notation ...................................................................................... 22 2.4 Kinematics ................................................................................................. 23 2.5 Kinetics ...................................................................................................... 26 2.5.1 Rigid Body Equations of Motion ........................................................... 26 2.5.2 Hydrodynamic Forces and Moments ..................................................... 28 2.5.3 Restoring Forces and Moments ............................................................. 31 2.5.4 Environmental Disturbances .................................................................. 32 2.5.5 Propulsion Forces and Moments ........................................................... 35 2.6 Nonlinear 6DOF Dynamics ....................................................................... 35 2.7 Mathematical Model of USV in 3 DOF .................................................... 36 2.7.1 Planar Kinematics .................................................................................. 36 2.7.2 Planar Nonlinear 3 DOF Dynamics ....................................................... 38 2.8 Configuration of Thrusters ........................................................................ 40 2.9 General Structure and Model Parameters .................................................. 41 2.9.1 Structure of USV ................................................................................... 41 2.9.2 Control System of USV ......................................................................... 42 2.9.3 Winch Control System ........................................................................... 43 Chapter 3: Mathematical Model of the Umbilical Cable (UC) ........................ 45 3.1 Basic Assumptions for UC ........................................................................ 45 3.2 Analysis on Forces of UV ......................................................................... 47 3.3 Relation for UC Equilibrium ..................................................................... 50 3.4 Catenary Equation in the Space Case ........................................................ 51 3.5 Shooting Method ....................................................................................... 55 3.6 Boundary Conditions ................................................................................. 57 3.7 Cable Effects ............................................................................................. 58 3.8 Model Parameters and Simulation ............................................................. 59 Chapter 4: Mathematical Model of Underwater Vehicle (UV) ........................ 63 4.1 Background ................................................................................................ 63 4.1.1 Basic Assumptions................................................................................. 63 4.1.2 Reference Frames .................................................................................. 64 4.1.3 Notations ................................................................................................ 65 4.2 Kinematics Equations ................................................................................ 66 4.3 Kinetic Equations ...................................................................................... 67 4.3.1 Rigid-Body Kinetics .............................................................................. 67 4.3.2 Hydrostatic Terms ................................................................................. 69 4.3.3 Hydrodynamic Terms ............................................................................ 70 4.3.4 Actuator Modeling ................................................................................. 75 4.3.5 Umbilical Cable Forces ......................................................................... 75 4.4 Nonlinear Equations of Motion (6DOF) ................................................... 76 4.5 Simplification of UV Dynamic Model ...................................................... 77 4.5.1 Simplifying the Mass and Inertia Matrix ............................................... 78 4.5.2 Simplifying the Hydrodynamic Damping Matrix.................................. 79 4.5.3 Simplifying the Gravitational and Buoyancy Vector ............................ 80 4.6 Thruster Modeling ..................................................................................... 80 4.7 Current Modeling ...................................................................................... 83 4.8 Dynamic Model Including Ocean Currents ............................................... 84 4.9 Complete Motion Equations of AUV (6DOF) .......................................... 89 4.10 Dynamics Model Parameter Identification ................................................ 91 4.11 Numerical Solution for Equations of Motion ............................................ 93 4.12 General Structure and Model Parameters .................................................. 94 4.12.1 Structure of AUV ............................................................................... 94 4.12.2 Control System of AUV ..................................................................... 96 Chapter 5: Guidance Theory ............................................................................... 97 5.1 Configuration of GNC System .................................................................. 97 5.1.1 Guidance ................................................................................................ 98 5.1.2 Navigation .............................................................................................. 98 5.1.3 Control ................................................................................................... 98 5.2 Maneuvering Problem Statement .............................................................. 99 5.3 Guidance Objectives ................................................................................ 100 5.3.1 Target Tracking ................................................................................... 100 5.3.2 Trajectory Tracking ............................................................................. 100 5.4 Waypoint Representation ........................................................................ 101 5.5 Path Following ......................................................................................... 102 5.6 Line of Sight (LOS) Waypoint Guidance ................................................ 102 5.6.1 Enclosure-Based Steering .................................................................... 104 5.6.2 Look-ahead Based Steering ................................................................. 105 5.6.3 LOS Control......................................................................................... 106 5.7 Cubic Polynomial for Path-Following ..................................................... 107 Chapter 6: Control Algorithm Design and Analysis ....................................... 110 6.1 Proportional Integral Differential (PID) Controller ................................ 110 6.1.1 General Theory .................................................................................... 110 6.1.2 Stability of General PID Controller ..................................................... 112 6.1.3 PID Tuning .......................................................................................... 114 6.1.4 Nonlinear PID for Marine Vehicles ..................................................... 116 6.1.5 Nonlinear PD for Marine Vehicles ...................................................... 117 6.1.6 Stability of Designed PD Controller .................................................... 117 6.2 Sliding Mode Controller .......................................................................... 118 6.2.1 Tracking Error and Sliding Surface ..................................................... 119 6.2.2 Chattering Situation ............................................................................. 120 6.2.3 Control Law and Stability .................................................................... 121 6.3 Allocation Control ................................................................................... 124 6.3.1 Linear Quadratic Unconstrained Control Allocation Using Lagrange Multipliers ................................................................................................ 125 6.3.2 Thruster Allocation with a Constrained Linear Model ........................ 127 6.4 Simulation Results and Discussion ......................................................... 131 6.4.1 Berthing (parking) Control of USV ..................................................... 133 6.4.2 Motion Control of UV ......................................................................... 136 Chapter 7: Obstacle Avoidance and Path Planning for Vehicle Using Rapidly-Exploring Random Trees Algorithm.................................................................. 168 7.1 Path Planning and Guidance: Two Interrelated Problems ....................... 168 7.2 RRT Algorithm for Exploration .............................................................. 171 7.2.1 Random Node Selection ...................................................................... 172 7.2.2 Nearest Neighbor Node Selection ....................................................... 173 7.2.3 RRT Exploration with Obstacles ......................................................... 174 7.3 RRT Algorithm for Navigation of AUV ................................................. 176 7.3.1 Basic RRT Algorithm .......................................................................... 176 7.3.2 Biased-Greedy RRT Algorithm ........................................................... 178 7.3.3 Synchronized Biased-Greedy RRT Algorithm .................................... 179 7.4 Path Pruning ............................................................................................ 182 7.4.1 Path Pruning Using LOS ..................................................................... 182 7.4.2 Global Path Pruning ............................................................................. 183 7.5 Summarize the Proposed RRT Algorithm ............................................... 185 7.6 Simulation for Path Following of AUV .................................................. 187 Chapter 8: Simulation of Complete USV-UC-UV Systems ............................ 196 8.1 Simulation Procedure .............................................................................. 196 8.2 Simulation Results and Discussion ......................................................... 201 8.2.1 Dynamic Behaviors of Complete USV (Stable)-Cable- AUV (Turning Motion) ..................................................................................................... 201 8.2.2 Dynamic Behaviors of Complete USV (Forward motion)-Cable- AUV (Turning Motion) ...................................................................................... 207 8.2.3 Applied Controller to Complete USV -Cable- AUV ........................... 215 Chapter 9: Conclusions and Future Works ..................................................... 238 9.1 Modeling of Complete USV-Cable-AUV System .................................. 238 9.2 Motion Control ........................................................................................ 239 9.3 Cable Force and Moment at the Tow Points ........................................... 239 9.4 Path Planning ........................................................................................... 239 9.5 Future Works ........................................................................................... 240Docto

    A COLLISION AVOIDANCE SYSTEM FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    The work in this thesis is concerned with the development of a novel and practical collision avoidance system for autonomous underwater vehicles (AUVs). Synergistically, advanced stochastic motion planning methods, dynamics quantisation approaches, multivariable tracking controller designs, sonar data processing and workspace representation, are combined to enhance significantly the survivability of modern AUVs. The recent proliferation of autonomous AUV deployments for various missions such as seafloor surveying, scientific data gathering and mine hunting has demanded a substantial increase in vehicle autonomy. One matching requirement of such missions is to allow all the AUV to navigate safely in a dynamic and unstructured environment. Therefore, it is vital that a robust and effective collision avoidance system should be forthcoming in order to preserve the structural integrity of the vehicle whilst simultaneously increasing its autonomy. This thesis not only provides a holistic framework but also an arsenal of computational techniques in the design of a collision avoidance system for AUVs. The design of an obstacle avoidance system is first addressed. The core paradigm is the application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly developed version for use as a motion planning tool. Later, this technique is merged with the Manoeuvre Automaton (MA) representation to address the inherent disadvantages of the RRT. A novel multi-node version which can also address time varying final state is suggested. Clearly, the reference trajectory generated by the aforementioned embedded planner must be tracked. Hence, the feasibility of employing the linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent Ricatti equation (SDRE) controller as trajectory trackers are explored. The obstacle detection module, which comprises of sonar processing and workspace representation submodules, is developed and tested on actual sonar data acquired in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing techniques applied are fundamentally derived from the image processing perspective. Likewise, a novel occupancy grid using nonlinear function is proposed for the workspace representation of the AUV. Results are presented that demonstrate the ability of an AUV to navigate a complex environment. To the author's knowledge, it is the first time the above newly developed methodologies have been applied to an A UV collision avoidance system, and, therefore, it is considered that the work constitutes a contribution of knowledge in this area of work.J&S MARINE LT

    Homotopy Based Reconstruction from Acoustic Images

    Get PDF

    Traffic-conflict-based modeling of collision risk in port waters

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Application of Geographic Information Systems

    Get PDF
    The importance of Geographic Information Systems (GIS) can hardly be overemphasized in today’s academic and professional arena. More professionals and academics have been using GIS than ever – urban & regional planners, civil engineers, geographers, spatial economists, sociologists, environmental scientists, criminal justice professionals, political scientists, and alike. As such, it is extremely important to understand the theories and applications of GIS in our teaching, professional work, and research. “The Application of Geographic Information Systems” presents research findings that explain GIS’s applications in different subfields of social sciences. With several case studies conducted in different parts of the world, the book blends together the theories of GIS and their practical implementations in different conditions. It deals with GIS’s application in the broad spectrum of geospatial analysis and modeling, water resources analysis, land use analysis, infrastructure network analysis like transportation and water distribution network, and such. The book is expected to be a useful source of knowledge to the users of GIS who envision its applications in their teaching and research. This easy-to-understand book is surely not the end in itself but a little contribution to toward our understanding of the rich and wonderful subject of GIS
    corecore