13 research outputs found

    Application of the Intuitionistic Fuzzy InterCriteria Analysis Method with Triples to a Neural Network Preprocessing Procedure

    Get PDF
    The approach of InterCriteria Analysis (ICA) was applied for the aim of reducing the set of variables on the input of a neural network, taking into account the fact that their large number increases the number of neurons in the network, thus making them unusable for hardware implementation. Here, for the first time, with the help of the ICA method, correlations between triples of the input parameters for training of the neural networks were obtained. In this case, we use the approach of ICA for data preprocessing, which may yield reduction of the total time for training the neural networks, hence, the time for the network’s processing of data and images

    Analyse inter-critère basée sur les fonctions de croyance pour l'analyse GPS

    Get PDF
    International audienceIn this paper we present an application of a new Belief Function-based Inter-Criteria Analysis (BF-ICrA) approach for Global Positioning System (GPS) Surveying Problems (GSP). GPS surveying is an NP-hard problem. For designing Global Positioning System surveying network, a given set of earth points must be observed consecutively. The survey cost is the sum of the distances to go from one point to another one. This kind of problems is hard to be solved with traditional numerical methods. In this paper we use BF-ICrA to analyze an Ant Colony Optimization (ACO) algorithm developed to provide near-optimal solutions for Global Positioning System surveying problem

    Functional and structural leaf plasticity determine photosynthetic performances during drought stress and recovery in two platanus orientalis populations from contrasting habitats.

    Get PDF
    In the context of climatic change, more severe and long-lasting droughts will modify the fitness of plants, with potentially worse consequences on the relict trees. We have investigated the leaf phenotypic (anatomical, physiological and biochemical) plasticity in well-watered, drought- stressed and re-watered plants of two populations of Platanus orientalis, an endangered species in the west of the Mediterranean area. The two populations originated in contrasting climate (drier and warmer, Italy (IT) population; more humid and colder, Bulgaria (BG) population). The IT control plants had thicker leaves, enabling them to maintain higher leaf water content in the dry environment, and more spongy parenchyma, which could improve water conductivity of these plants and may result in easier CO2 diffusion than in BG plants. Control BG plants were also characterized by higher photorespiration and leaf antioxidants compared to IT plants. BG plants responded to drought with greater leaf thickness shrinkage. Drought also caused substantial reduction in photosynthetic parameters of both IT and BG plants. After re-watering, photosynthesis did not fully recover in either of the two populations. However, IT leaves became thicker, while photorespiration in BG plants further increased, perhaps indicating sustained activation of defensive mechanisms. Overall, our hypothesis, that plants with a fragmented habitat (i.e., the IT population) lose phenotypic plasticity but acquire traits allowing better resistance to the climate where they became adapted, remains confirmed

    Hybrid intelligent parameter tuning approach for COVID-19 time series modeling and prediction

    Get PDF
    A novel hybrid intelligent approach for tuning the parameters of Interval Type-2 Intuitionistic Fuzzy Logic System (IT2IFLS) is introduced for the modeling and prediction of coronavirus disease 2019 (COVID-19) time series. COVID-19 is known to be a virus caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-2) with a huge negative impact on human, work and world economy. Globally, more than 100 million people have been infected with over two million deaths and it is not certain when the pandemic will end. Predicting the trend of the COVID-19 therefore becomes an important and challenging task. Many approaches ranging from statistical approaches to machine learning methods have been formulated and applied for the prediction of the disease. In this work, the sliding mode control learning algorithm is used to adjust the parameters of the antecedent parts of  IT2IFLS system while the gradient descent backpropagation is adopted to tune the consequent parameters in a hybrid manner. The results of the hybrid intelligent learning model are compared with results of single learning models using sliding mode control and gradient descent algorithms and found to provide good performance in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) especially in noisy environments. The type-2 hybrid model also outperforms its type-1 counterparts in the different problem instances

    Software Development Effort Estimation Using Regression Fuzzy Models

    Full text link
    Software effort estimation plays a critical role in project management. Erroneous results may lead to overestimating or underestimating effort, which can have catastrophic consequences on project resources. Machine-learning techniques are increasingly popular in the field. Fuzzy logic models, in particular, are widely used to deal with imprecise and inaccurate data. The main goal of this research was to design and compare three different fuzzy logic models for predicting software estimation effort: Mamdani, Sugeno with constant output and Sugeno with linear output. To assist in the design of the fuzzy logic models, we conducted regression analysis, an approach we call regression fuzzy logic. State-of-the-art and unbiased performance evaluation criteria such as standardized accuracy, effect size and mean balanced relative error were used to evaluate the models, as well as statistical tests. Models were trained and tested using industrial projects from the International Software Benchmarking Standards Group (ISBSG) dataset. Results showed that data heteroscedasticity affected model performance. Fuzzy logic models were found to be very sensitive to outliers. We concluded that when regression analysis was used to design the model, the Sugeno fuzzy inference system with linear output outperformed the other models.Comment: This paper has been accepted in January 2019 in Computational Intelligence and Neuroscience Journal (In Press

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information

    Interval type-2 Atanassov-intuitionistic fuzzy logic for uncertainty modelling

    Get PDF
    This thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark a shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzzy set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess this thesis investigates a new paradigm for uncertainty modelling by employing a new class of type-2 fuzzy logic system that utilises fuzzy sets with membership and non-membership functions that are intervals. Fuzzy logic systems, employing type-1 fuzzy sets, that mark shift from computing with numbers towards computing with words have made remarkable impacts in the field of artificial intelligence. Fuzzy logic systems of type-2, a generalisation of type-1 fuzzy logic systems that utilise type-2 fuzzy sets, have created tremendous advances in uncertainty modelling. The key feature of the type-2 fuzzy logic systems, with particular reference to interval type-2 fuzzy logic systems, is that the membership functions of interval type-2 fuzzy sets are themselves fuzzy. These give interval type-2 fuzzy logic systems an advantage over their type-1 counterparts which have precise membership functions. Whilst the interval type-2 fuzzy logic systems are effective in modelling uncertainty, they are not able to adequately handle an indeterminate/neutral characteristic of a set, because interval type-2 fuzzy sets are only specified by membership functions with an implicit assertion that the non-membership functions are complements of the membership functions (lower or upper). In a real life scenario, it is not necessarily the case that the non-membership function of a set is complementary to the membership function. There may be some degree of hesitation arising from ignorance or a complete lack of interest concerning a particular phenomenon. Atanassov intuitionistic fuzzy set, another generalisation of the classical fuzzy set, captures this thought process by simultaneously defining a fuzzy set with membership and non-membership functions such that the sum of both membership and non-membership functions is less than or equal to 1. In this thesis, the advantages of both worlds (interval type-2 fuzzy set and Atanassov intuitionistic fuzzy set) are explored and a new and enhanced class of interval type-2 fuzz set namely, interval type-2 Atanassov intuitionistic fuzzy set, that enables hesitation, is introduced. The corresponding fuzzy logic system namely, interval type-2 Atanassov intuitionistic fuzzy logic system is rigorously and systematically formulated. In order to assess the viability and efficacy of the developed framework, the possibilities of the optimisation of the parameters of this class of fuzzy systems are rigorously examined. First, the parameters of the developed model are optimised using one of the most popular fuzzy logic optimisation algorithms such as gradient descent (first-order derivative) algorithm and evaluated on publicly available benchmark datasets from diverse domains and characteristics. It is shown that the new interval type-2 Atanassov intuitionistic fuzzy logic system is able to handle uncertainty well through the minimisation of the error of the system compared with other approaches on the same problem instances and performance criteria. Secondly, the parameters of the proposed framework are optimised using a decoupledextended Kalman filter (second-order derivative) algorithm in order to address the shortcomings of the first-order gradient descent method. It is shown statistically that the performance of this new framework with fuzzy membership and non-membership functions is significantly better than the classical interval type-2 fuzzy logic systems which have only the fuzzy membership functions, and its type-1 counterpart which are specified by single membership and non-membership functions. The model is also assessed using a hybrid learning of decoupled extended Kalman filter and gradient descent methods. The proposed framework with hybrid learning algorithm is evaluated by comparing it with existing approaches reported in the literature on the same problem instances and performance metrics. The simulation results have demonstrated the potential benefits of using the proposed framework in uncertainty modelling. In the overall, the fusion of these two concepts (interval type-2 fuzzy logic system and Atanassov intuitionistic fuzzy logic system) provides a synergistic capability in dealing with imprecise and vague information

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Symmetric and Asymmetric Data in Solution Models

    Get PDF
    This book is a Printed Edition of the Special Issue that covers research on symmetric and asymmetric data that occur in real-life problems. We invited authors to submit their theoretical or experimental research to present engineering and economic problem solution models that deal with symmetry or asymmetry of different data types. The Special Issue gained interest in the research community and received many submissions. After rigorous scientific evaluation by editors and reviewers, seventeen papers were accepted and published. The authors proposed different solution models, mainly covering uncertain data in multicriteria decision-making (MCDM) problems as complex tools to balance the symmetry between goals, risks, and constraints to cope with the complicated problems in engineering or management. Therefore, we invite researchers interested in the topics to read the papers provided in the book
    corecore