10 research outputs found

    Soil-Water Conservation, Erosion, and Landslide

    Get PDF
    The predicted climate change is likely to cause extreme storm events and, subsequently, catastrophic disasters, including soil erosion, debris and landslide formation, loss of life, etc. In the decade from 1976, natural disasters affected less than a billion lives. These numbers have surged in the last decade alone. It is said that natural disasters have affected over 3 billion lives, killed on average 750,000 people, and cost more than 600 billion US dollars. Of these numbers, a greater proportion are due to sediment-related disasters, and these numbers are an indication of the amount of work still to be done in the field of soil erosion, conservation, and landslides. Scientists, engineers, and planners are all under immense pressure to develop and improve existing scientific tools to model erosion and landslides and, in the process, better conserve the soil. Therefore, the purpose of this Special Issue is to improve our knowledge on the processes and mechanics of soil erosion and landslides. In turn, these will be crucial in developing the right tools and models for soil and water conservation, disaster mitigation, and early warning systems

    Sediment Dynamics and Channel Connectivity on Hillslopes

    Get PDF
    The pattern, magnitude, and frequency of hillslope erosion and deposition are spatially varied under the influence of micro-topography and channel geometry. This research investigates the interrelationships between erosion/deposition, micro-topography, and channel connectivity on a hillslope in Loudon, Tennessee using the centimeter (cm) level temporal Digital Elevation Models collected using laser scanning. This research addressed (1) the effect of spatial resolution on the erosion/deposition quantification, and rill delineation; (2) the influences of micro-topographic factors (e.g. slope, roughness, aspect) on erosion and deposition; (3) the relationship between the structural connectivity -- depressions and confluence of rills -- and the sedimentological connectivity. I conducted (1) visual and quantitative assessments for the erosion and deposition, and the revised automated proximity and conformity analysis for the rill network; (2) quantile regression for micro-topographic factors using segmented rill basins; and (3) cross-correlation analysis using erosion and deposition series along the channels.Overall, rills are sedimentologically more dynamic than the interrill areas. A larger grid size reduces the detectable changes in both areal and volumetric quantities, and also decreases the total length and number of rills. The offset between delineated rills and the reference increases with larger grid sizes. A larger rill basin has higher erosion and deposition with the magnitude of erosion greater than deposition. The slope has a positive influence on erosion and a negative one on deposition; roughness has a positive influence on deposition and a negative one on erosion. Areas that are more north-facing experience higher erosion and lower deposition. Rill length explains 46% of the variability for erosion and 24% for deposition. The depressions are associated with higher erosion in the downslope direction. The correlations between the erosion and the confluence are positive; the correlation between the deposition and the sink is positive. Overall, the influence of structural connectivity on the sedimentological connectivity is within 25 cm in both upstream and downstream directions. This research contributes to the understanding in how the sediment movement on hillslopes is governed by topographic variations and channel connectivity, and future work may explore hillslope channels at broader geographical and temporal scales

    Multi-scale controls on spatial patterns of soil water storage in the hummocky regions of North America

    Get PDF
    The intensification of land-water management due to agriculture, forestry, and urbanization is a global phenomenon increasing the pressure on world’s water resources and threatening water security in North America. The Prairie Pothole Region of North America covers approximately 775,000 km2 and contains millions of wetlands that serve important hydrological and ecological functions. The unique hummocky topography and the variable effect of different processes contribute to high spatio-temporal variability in soil water, posing major challenges in hydrological studies. The objectives of this study were to a) examine the spatial pattern of soil water storage and its scale and location characteristics; and b) to identify its controls at multiple scales. Soil water content at 20 cm intervals down to 140 cm was measured along a transect extending over several knoll–depression cycles in a hummocky landscape. High water storage in depressions and low water storage on the knolls created a spatial pattern that was inversely related to elevation. Spatial patterns were strongly similar within any given season (intra-season rank correlation coefficient as high as 0.99), moreso than between the same season over different years (inter-annual rank correlation coefficient as high as 0.97). Less similar spatial patterns were observed between different seasons (inter-season rank correlation coefficients as high as 0.90). While the intra-season and inter-annual spatial patterns were similar at scales >18 m, the inter-season spatial patterns were similar at much large scales (>72 m). This may be due to the variations in landform elements and micro-topography. The similarity at scales >72 m were present at any time and depth. However, small- and medium-scale spatial patterns changed with depth and with season due to a change in the hydrological processes. The relative dominance of a given set of processes operating both within a season and for the same season over different years yielded strong intra-season and inter-annual similarity at scales >18 m. Moreover, similarity was stronger with increasing depth, and was thought to be due to the dampening effect of overlying soil layers that are more dynamic. Similarity of spatial patterns over time helps to identify the location that best represents the field averaged soil water and improves sampling efficiency. Change in the similarity of scales of spatial pattern helps identify the change in sampling domain as controlled by hydrological processes. The scale information can be used to improve prediction for use in environmental management and modeling of different surface and subsurface hydrological processes. The similarity of spatial pattern between the surface and subsurface layers help make inferences on deep layer hydrological processes as well as groundwater dynamics from surface water measurements

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    The past : a compass for future earth

    Get PDF
    Antarctic sea ice impacts on the ocean-atmosphere heat and gas fluxes, the formation of deep and intermediate waters, the nutrient distribution and primary productivity, the so-called &#8216;biological carbon pump&#8217;, one of the most active in the global ocean. In this study, we explore the link between sea ice dynamic, biological production and nutrient cycling during the late Holocene (the last 2,000 yrs) in the Adélie Basin, East Antarctica, from the well-dated sediments of the Ocean Drilling Program (ODP) Site U1357. This archive, composed from ~32 meters of seasonal to annual laminated diatomaceous sequences, allows reconstructions at an unprecedented time resolution (5-10 yrs). Our study combines records of diatom census counts and diatom-specific biomarkers (a ratio (D/T) of di- and tri-unsaturated Highly Branched Isoprenoid lipids (HBI)) as indicators of sea ice and biological production changes, XRF data as markers for terrigenous inputs and bulk nitrogen isotopes (d15N) and d15N on chlorins as proxies for reconstructing nitrogen cycle. The diatom and HBI records reveal five distinct periods. From 0 to 350 yrs AD, decreasing occurrences of sea ice-related diatom species (e.g. Fragilariopsis curta + F. cylindrus) together with low D/T values and increasing open ocean diatom species (large centrics, Chaetoceros Resting Spores (CRS)) document a progressive decline of sea ice presence during the year (>9 months per year) with spring melting occurring earlier in the year and autumn sea ice formation appearing later. In contrast, between 350 and 750 yrs AD, high production of open ocean diatom species and low low D/T values and sea ice related species indicate a short duration of sea ice cover (~10 months per year) is illustrated by a pronounced increase of sea ice-associated diatom species and high D/T values. Between ~1400 and 1850 yrs AD, seasonal sea ice strongly declines (<~7 months per year) as a result of early spring melting (increasing CRS production) and late autumn waxing (high occurrences of Thalassiosira antarctica). Longer growing seasons promoted a substantial development of phytoplankton communities (especially large centric diatoms) that conducted to lower D/T values. Consistent with diatom and HBI reconstructions, XRF data show higher Fe/Al and Zr/Al ratios values during inferred warmer periods and lower ratio values during inferred cooler and icier periods, thus supporting a strong impact of the sea ice seasonal cycle on glacial runoffs. The link between sea ice conditions, biological production and nutrient cycling is still being explored and we will discuss its relationship by combining all the cited records cited above with the d15N records that we are currently generated. Based on our results, we find that sea ice dynamic and associated diatom production in the Adélie Basin revealed an opposite climatic trend than that identified in the Northern Hemisphere for the last 2000 years. The 'Little Ice Age' (1400-1850 yrs AD) or the 'Dark Ages' (400-750 yrs AD) corresponded to warmer climate conditions in the Adélie Basin, while the 'Roman Warm Period' (0-350 yrs AD) or the 'Medieval Warm Period' (900-1200 yrs AD) were associated to colder conditions. We therefore emphasize that Northern and Southern Hemisphere climate evolved in anti-phase seesaw pattern during the late Holocene

    Analysis of vegetation-activity trends in a global land degradation framework

    Get PDF
    Land degradation is a global issue on a par with climate change and loss of biodiversity, but its extent and severity are only roughly known and there is little detail on the immediate processes – let alone the drivers. Earth-observation methods enable monitoring of land resources in a consistent, physical way and on global scale by making use of vegetation activity and/or cover as proxies. A well-known spectral proxy is the normalized difference vegetation index (NDVI), which is available in high temporal resolution time series since the early 1980s. In this work, harmonic analyses and non-parametric trend tests were applied to the GIMMS NDVI dataset (1981–2008) in order to quantify positive changes (or greening) and negative changes (browning). Phenological shifts and variations in length of growing season were accounted for using analysis by vegetation development stage rather than by calendar day. This approach does not rely on temporal aggregation for elimination of seasonal variation. The latter might introduce artificial trends as demonstrated in the chapter on the modifiable temporal unit problem. Still, a major assumption underlying the analysis is that trends were invariant, i.e. linear or monotonic, over time. However, these monotonic trends in vegetation activity may consist of an alternating sequence of greening and/or browning periods. This effect and the contribution of short-term trends to longer-term change was analysed using a procedure for detection of trend breaks. Both abrupt and gradual changes were found in large parts of the world, especially in (semi-arid) shrubland and grassland. Many abrupt changes were found around large-scale natural influences like the Mt Pinatubo eruption in 1991 and the strong 1997/98 El Niño event. This marks the importance of accounting for trend changes in the analysis of long-term NDVI time series. These new change-detection techniques advance our understanding of vegetation variability at a multi-decadal scale, but do not provide links to driving processes. It is very complex to disentangle all natural and human drivers and their interactions. As a first step, the spatial relation between changes in climate parameters and changes in vegetation activity was addressed in this work. It appeared that a substantial proportion (54%) of the spatial variation in NDVI changes could be associated to climatic changes in temperature, precipitation and incident radiation, especially in forest biomes. In other regions, the lack of such associations might be interpreted as human-induced land degradation. With these steps we demonstrated the value of global satellite records for monitoring land resources, although many steps are still to be taken.</p

    Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development

    Get PDF
    environmental economics; biodiversity; sustainable developmen

    3-я Міжнародна конференція зі сталого майбутнього: екологічні, технологічні, соціальні та економічні аспекти (ICSF 2022) 24-27 травня 2022 року, м. Кривий Ріг, Україна

    Get PDF
    Матеріали 3-ої Міжнародної конференції зі сталого майбутнього: екологічні, технологічні, соціальні та економічні аспекти (ICSF 2022) 24-27 травня 2022 року, м. Кривий Ріг, Україна.Proceedings of the 3rd International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2022) 24-27 May 2022, Kryvyi Rih, Ukraine
    corecore