221 research outputs found

    Compact modelling in RF CMOS technology

    Get PDF
    With the continuous downscaling of complementary metal-oxide-semiconductor (CMOS) technology, the RF performance of metal-oxide-semiconductor field transistors (MOSFETs) has considerably improved over the past years. Today, the standard CMOS technology has become a popular choice for realizing radio frequency (RF) applications. The focus of the thesis is on device compact modelling methodologies in RF CMOS. Compact models oriented to integrated circuit (ICs) computer automatic design (CAD) are the key component of a process design kit (PDK) and the bridge between design houses and foundries. In this work, a novel substrate model is proposed for accurately characterizing the behaviour of RF-MOSFETs with deep n-wells (DNW). A simple test structure is presented to directly access the substrate parasitics from two-port measurements in DNWs. The most important passive device in RFIC design in CMOS is the spiral inductor. A 1-pi model with a novel substrate network is proposed to characterize the broadband loss mechanisms of spiral inductors. Based on the proposed 1-pi model, a physics-originated fully-scalable 2-pi model and model parameter extraction methodology are also presented for spiral inductors in this work. To test and verify the developed active and passive device models and model parameter extraction methods, a series of RF-MOSFETs and planar on-chip spiral inductors with different geometries manufactured by employing standard RF CMOS processes were considered. Excellent agreement between the measured and the simulated results validate the compact models and modelling technologies developed in this work

    Thermal Noise in Modern CMOS Technology

    Get PDF
    Non

    Simulations of III-V NWFET Double-Balanced Gilbert Cells with an Improved Noise Model

    Get PDF
    III-V nanowire transistors might provide a mean for extending Moore’s law, by overcoming the scaling limitations ultimately facing planar silicon CMOS. These high frequency capable transistors with cut-off frequencies in the terahertz regime are suitable for radio communication. In this project an active double-balanced gilbert cell mixer consisting of nanowire field-effect transistors (NWFETs) was simulated in Cadence Virtuoso using a compact transistor model. The transistor model was extended to take flicker and thermal noise into account, in order to more accurately compare the mixers against state-of-the-art silicon CMOS implementations. The final mixer for 60 GHz showed much greater linearity (0.4 dBm 1 dB compression and 8.5 dBm IIP 3) than previously reported silicon CMOS counterparts. It exhibited a conversion gain of 3.47 dB, a N F DSB of 14.6 dB and a DC power consumption of 8.7 mW.Based on these findings the design requirements for suitable low noise amplifier was discussed

    Characterization and design of CMOS components for microwave and millimeter wave applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Study Of Nanoscale Cmos Device And Circuit Reliability

    Get PDF
    The development of semiconductor technology has led to the significant scaling of the transistor dimensions -The transistor gate length drops down to tens of nanometers and the gate oxide thickness to 1 nm. In the future several years, the deep submicron devices will dominate the semiconductor industry for the high transistor density and the corresponding performance enhancement. For these devices, the reliability issues are the first concern for the commercialization. The major reliability issues caused by voltage and/or temperature stress are gate oxide breakdown (BD), hot carrier effects (HCs), and negative bias temperature instability (NBTI). They become even more important for the nanoscale CMOS devices, because of the high electrical field due to the small device size and high temperature due to the high transistor densities and high-speed performances. This dissertation focuses on the study of voltage and temperature stress-induced reliability issues in nanoscale CMOS devices and circuits. The physical mechanisms for BD, HCs, and NBTI have been presented. A practical and accurate equivalent circuit model for nanoscale devices was employed to simulate the RF performance degradation in circuit level. The parameter measurement and model extraction have been addressed. Furthermore, a methodology was developed to predict the HC, TDDB, and NBTI effects on the RF circuits with the nanoscale CMOS. It provides guidance for the reliability considerations of the RF circuit design. The BD, HC, and NBTI effects on digital gates and RF building blocks with the nanoscale devices low noise amplifier, oscillator, mixer, and power amplifier, have been investigated systematically. The contributions of this dissertation include: It provides a thorough study of the reliability issues caused by voltage and/or temperature stresses on nanoscale devices from device level to circuit level; The more real voltage stress case high frequency (900 MHz) dynamic stress, has been first explored and compared with the traditional DC stress; A simple and practical analytical method to predict RF performance degradation due to voltage stress in the nanoscale devices and RF circuits was given based on the normalized parameter degradations in device models. It provides a quick way for the designers to evaluate the performance degradations; Measurement and model extraction technologies, special for the nanoscale MOSFETs with ultra-thin, ultra-leaky gate oxide, were addressed and employed for the model establishments; Using the present existing computer-aided design tools (Cadence, Agilent ADS) with the developed models for performance degradation evaluation due to voltage or/and temperature stress by simulations provides a potential way that industry could use to save tens of millions of dollars annually in testing costs. The world now stands at the threshold of the age of nanotechnology, and scientists and engineers have been exploring here for years. The reliability is the first challenge for the commercialization of the nanoscale CMOS devices, which will be further downscaling into several tens or ten nanometers. The reliability is no longer the post-design evaluation, but the pre-design consideration. The successful and fruitful results of this dissertation, from device level to circuit level, provide not only an insight on how the voltage and/or temperature stress effects on the performances, but also methods and guidance for the designers to achieve more reliable circuits with nanoscale MOSFETs in the future

    Radio Frequency IC Design with Nanoscale DG-MOSFETs

    Get PDF

    Characterization of 28 nm FDSOI MOS and application to the design of a low-power 2.4 GHz LNA

    Get PDF
    IoT is expected to connect billions of devices all over world in the next years, and in a near future, it is expected to use LR-WPAN in a wide variety of applications. Not all the devices will require of high performance but will require of low power hungry systems since most of them will be powered with a battery. Conventional CMOS technologies cannot cover these needs even scaling it to very small regimes, which appear other problems. Hence, new technologies are emerging to cover the needs of this devices. One promising technology is the UTBB FDSOI, which achieves good performance with very good energy efficiency. This project characterizes this technology to obtain a set of parameters of interest for analog/RF design. Finally, with the help of a low-power design methodology (gm/Id approach), a design of an ULP ULV LNA is performed to check the suitability of this technology for IoT

    On the VCO/Frequency Divider Interface in Cryogenic CMOS PLL for Quantum Computing Applications

    Get PDF
    The availability of quantum microprocessors is mandatory, to efficiently run those quantum al-gorithms promising a radical leap forward in computation capability. Silicon-based nanostruc-tured qubits appear today as a very interesting approach, because of their higher information density, longer coherence times, fast operation gates, and compatibility with the actual CMOS technology. In particular, thanks to their phase noise properties, the actual CMOS RFIC Phase-Locked Loops (PLL) and Phase-Locked Oscillators (PLO) are interesting circuits to synthe-size control signals for spintronic qubits. In a quantum microprocessor, these circuits should op-erate close to the qubits, that is, at cryogenic temperatures. The lack of commercial cryogenic Design Kits (DK) may make the interface between the Voltage Controlled Oscillator (VCO) and the Frequency Divider (FD) a serious issue. Nevertheless, currently this issue has not been sys-tematically addressed in the literature. The aim of the present paper is to investigate the VCO/FD interface when the temperature drops from room to cryogenic. To this purpose, physi-cal models of electronics passive/active devices and equivalent circuits of VCO and the FD were developed at room and cryogenic temperatures. The modeling activity has led to design guide-lines for the VCO/FD interface, useful in the absence of cryogenic DKs

    A dual-mode Q-enhanced RF front-end filter for 5 GHz WLAN and UWB with NB interference rejection

    Get PDF
    The 5 GHz Wireless LAN (802.11a) is a popular standard for wireless indoor communications providing moderate range and speed. Combined with the emerging ultra Wideband standard (UWB) for short range and high speed communications, the two standards promise to fulfil all areas of wireless application needs. However, due to the overlapping of the two spectrums, the stronger 802.11a signals tend to interfere causing degradation to the UWB receiver. This presents one of the main technical challenges preventing the wide acceptance of UWB. The research work presented in this thesis is to propose a low cost RF receiver front-end filter topology that would resolve the narrowband (NB) interference to UWB receiver while being operable in both 802.11a mode and UWB mode. The goal of the dual mode filter design is to reduce cost and complexity by developing a fully integrated front-end filter. The filter design utilizes high Q passive devices and Q-enhancement technique to provide front-end channel-selection in NB mode and NB interference rejection in UWB mode. In the 802.11a NB mode, the filter has a tunable gain of 4 dB to 25 dB, NF of 8 dB and an IIP3 between -47 dBm and -18 dBm. The input impedance is matched at -16 dB. The frequency of operation can be tuned from 5.15 GHz to 5.35 GHz. In the UWB mode, the filter has a gain of 0 dB to 8 dB across 3.1 GHz to 9 GHz. The filter can reject the NB interference between 5.15 GHz to 5.35 GHz at up to 60 dB. The Q of the filter is tunable up to a 250 while consuming a maximum of 23.4 mW of power. The fully integrated dual mode filter occupies a die area of 1.1 mm2
    corecore