16,712 research outputs found

    Bindings and RESTlets: a novel set of CoAP-based application enablers to build IoT applications

    Get PDF
    Sensors and actuators are becoming important components of Internet of Things (IoT) applications. Today, several approaches exist to facilitate communication of sensors and actuators in IoT applications. Most communications go through often proprietary gateways requiring availability of the gateway for each and every interaction between sensors and actuators. Sometimes, the gateway does some processing of the sensor data before triggering actuators. Other approaches put this processing logic further in the cloud. These approaches introduce significant latencies and increased number of packets. In this paper, we introduce a CoAP-based mechanism for direct binding of sensors and actuators. This flexible binding solution is utilized further to build IoT applications through RESTlets. RESTlets are defined to accept inputs and produce outputs after performing some processing tasks. Sensors and actuators could be associated with RESTlets (which can be hosted on any device) through the flexible binding mechanism we introduced. This approach facilitates decentralized IoT application development by placing all or part of the processing logic in Low power and Lossy Networks (LLNs). We run several tests to compare the performance of our solution with existing solutions and found out that our solution reduces communication delay and number of packets in the LLN

    Secure communication in IP-based wireless sensor network via a trusted gateway

    Get PDF
    As the IP-integration of wireless sensor networks enables end-to-end interactions, solutions to appropriately secure these interactions with hosts on the Internet are necessary. At the same time, burdening wireless sensors with heavy security protocols should be avoided. While Datagram TLS (DTLS) strikes a good balance between these requirements, it entails a high cost for setting up communication sessions. Furthermore, not all types of communication have the same security requirements: e.g. some interactions might only require authorization and do not need confidentiality. In this paper we propose and evaluate an approach that relies on a trusted gateway to mitigate the high cost of the DTLS handshake in the WSN and to provide the flexibility necessary to support a variety of security requirements. The evaluation shows that our approach leads to considerable energy savings and latency reduction when compared to a standard DTLS use case, while requiring no changes to the end hosts themselves

    ITERL: A Wireless Adaptive System for Efficient Road Lighting

    Get PDF
    This work presents the development and construction of an adaptive street lighting system that improves safety at intersections, which is the result of applying low-power Internet of Things (IoT) techniques to intelligent transportation systems. A set of wireless sensor nodes using the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard with additional internet protocol (IP) connectivity measures both ambient conditions and vehicle transit. These measurements are sent to a coordinator node that collects and passes them to a local controller, which then makes decisions leading to the streetlight being turned on and its illumination level controlled. Streetlights are autonomous, powered by photovoltaic energy, and wirelessly connected, achieving a high degree of energy efficiency. Relevant data are also sent to the highway conservation center, allowing it to maintain up-to-date information for the system, enabling preventive maintenance.ConsejerĂ­a de Fomento y Vivienda Junta de AndalucĂ­a G-GI3002 / IDIOFondo Europeo de Desarrollo Regional G-GI3002 / IDI

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Internet Censorship: An Integrative Review of Technologies Employed to Limit Access to the Internet, Monitor User Actions, and their Effects on Culture

    Get PDF
    The following conducts an integrative review of the current state of Internet Censorship in China, Iran, and Russia, highlights common circumvention technologies (CTs), and analyzes the effects Internet Censorship has on cultures. The author spends a large majority of the paper delineating China’s Internet infrastructure and prevalent Internet Censorship Technologies/Techniques (ICTs), paying particular attention to how the ICTs function at a technical level. The author further analyzes the state of Internet Censorship in both Iran and Russia from a broader perspective to give a better understanding of Internet Censorship around the globe. The author also highlights specific CTs, explaining how they function at a technical level. Findings indicate that among all three nation-states, state control of Internet Service Providers is the backbone of Internet Censorship. Specifically, within China, it is discovered that the infrastructure functions as an Intranet, thereby creating a closed system. Further, BGP Hijacking, DNS Poisoning, and TCP RST attacks are analyzed to understand their use-case within China. It is found that Iran functions much like a weaker version of China in regards to ICTs, with the state seemingly using the ICT of Bandwidth Throttling rather consistently. Russia’s approach to Internet censorship, in stark contrast to Iran and China, is found to rely mostly on the legislative system and fear to implement censorship, though their technical level of ICT implementation grows daily. TOR, VPNs, and Proxy Servers are all analyzed and found to be robust CTs. Drawing primarily from the examples given throughout the paper, the author highlights the various effects of Internet Censorship on culture – noting that at its core, Internet Censorship destroys democracy

    MI: Cross-layer Malleable Identity

    Get PDF
    Abstract-Access to Internet services is granted based on application-layer user identities, which also offer accountability. The revered layered network model dictates a disparate networklayer identity scheme for systems. We challenge this religious layered model adherence by demonstrating the practical benefits derived from a cross-layer identity scheme. Instead of a rigid identity, our malleable identity (MI) scheme empowers a traffic originator to fine-tune, on a per-case basis if necessary, her 3rd-party issued identity attributes embedded in an identity voucher (IV). When tagged to traffic, IVs benefit users, the Internet and services. A user can (a) control her traffic identifiability, ranging from anonymous, pseudonymous to personallyidentifiable through attributes fine-tuning and (b) enjoy Internetwide Single-Sign On (SSO) to network-layer Internet resources and application-layer services through IV persistence, without privacy loss naturally associated with SSO. The Internet and services can prioritize traffic, using IV attributes, as defense against Denial-of-Capability (DoC), Distributed Denial-of-Service (DDoS) and Border Gateway Protocol (BGP) prefix hijack/route forgery. MI is protocol/architecture-agnostic, and backwards/forwards compatible

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer
    • …
    corecore