512 research outputs found

    Using Relevance Vector Machines Approach for Prediction of Total Suspended Solids and Turbidity to Sustain Water Quality and Wildlife in Mud Lake

    Get PDF
    Mud Lake is a wildlife refuge located in southeastern Idaho just north of Bear Lake that traps sediment from Bear River water flowing into Bear Lake.Very few water quality and sediment observations, if any, exist spatially in Mud Lake. Spatial patterns of sediment deposition may affect Mud Lake flows and habitat; prediction of those patterns should help refuge managers predict water quality constituents and spatial distribution of fine sediment.This will help sustain the purposes of Mud Lake as a habitat and migratory station for species. The main objective of the research is the development of Multivariate Relevant Vector Machine (MVRVM) to predict suspended fine sediment and water quality constituents, and to provide an understanding for the practical problem of determining the amount of data required for the MVRVM. MVRVM isa statistical learning algorithm that is based on Bayes theory.It has been widely used to predict patterns in hydrological systems and other fields. This research represents the first known attempt to use a MVRVM approach to predict transport of very fine sediment andwater quality constituents in a complex natural system. The results demonstrate the ability of the MVRVM to capture and predict the underlying patterns in data.Also careful construction of the experimental design for data collection can lead the Relevant Vectors (RVs is a subset of training observation which carries significant information that is used for prediction) to show locations of significant patterns. The predictions of water quality constituents will be of potential value to US Fish and Wildlife refuge managers in making decisions for operation and management in the case of Mud Lake based on their objectives, and will lead the way for scientists to expand the use of the MVRVM for modeling of suspended fine sediment and water quality in complex natural systems

    Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry

    Get PDF
    The main aims and contributions of the present paper are to use new soft computing methods for the simulation of scour geometry (depth/height and locations) in a comparative framework. Five models were used for the prediction of the dimension and location of the scour pit. The five developed models in this study are multilayer perceptron (MLP) neural network, radial basis functions (RBF) neural network, adaptive neuro fuzzy inference systems (ANFIS), multiple linear regression (MLR), and multiple non-linear regression (MNLR) in comparison with empirical equations. Four non-dimensional geometry parameters of scour hole shape are predicted by these models including the maximum scour depth (S), the distance of S from the weir (XS), the maximum height of downstream deposited sediments (hd), and distance of hd from the weir (XD). The best results over train data derived for XS/Z and hd/Z by the MLP model with R2 are 0.95 and 0.96 respectively; the best predictions for S/Z and XD/Z are from the ANFIS model with R2 0.91 and 0.96 respectively. The results indicate that the application of MLP and ANFIS results in the accurate prediction of scour geometry for the designing of stable grade control structures in alluvial irrigation channels

    Modelling Temperature Variation of Mushroom Growing Hall Using Artificial Neural Networks

    Full text link
    The recent developments of computer and electronic systems have made the use of intelligent systems for the automation of agricultural industries. In this study, the temperature variation of the mushroom growing room was modeled by multi-layered perceptron and radial basis function networks based on independent parameters including ambient temperature, water temperature, fresh air and circulation air dampers, and water tap. According to the obtained results from the networks, the best network for MLP was in the second repetition with 12 neurons in the hidden layer and in 20 neurons in the hidden layer for radial basis function network. The obtained results from comparative parameters for two networks showed the highest correlation coefficient (0.966), the lowest root mean square error (RMSE) (0.787) and the lowest mean absolute error (MAE) (0.02746) for radial basis function. Therefore, the neural network with radial basis function was selected as a predictor of the behavior of the system for the temperature of mushroom growing halls controlling system

    Experimental, Numerical and Field Approaches to Scour Research

    Get PDF
    This book presents fourteen state-of-the-art research papers prepared by research scientists and engineers around the world. They explore the subject of scour related to bridge piers, monopiles, propellers, turbines, weirs, dams, grade-control structures, and pipelines. Their works are based on three different research methodologies, namely experimental, numerical, and field approaches

    The Application of Hydraulic and Sediment Transport Models in Fluvial Geomorphology

    Get PDF
    After publishing the famous “Fluvial Processes in Geomorphology” in the early 1960s, the work of Luna Leopold, Gordon Wolman, and John Miller became a key for opening the door to understanding rivers and streams. They first illustrated the problem to geomorphologists and geographers. Later, Chang, in his “Fluvial Processes in River Engineering”, provided a basis for engineers, showing this group of professionals how to deal with rivers and how to understand them. Since then, more informative studies have been published. Many of the authors started to combine fluvial geomorphology knowledge and river engineering needs, such as “Tools in Fluvial Geomorphology” by G. Mathias Kondolf and HervĂ© PiĂ©gay, or focused more on river engineering tasks, such as “Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches” by Andrew Simon, Sean Bennett, and Janine Castro. Finally, Luna Leopold summarized river and stream morphologies in the beautiful “A view of the river”. It appears that we continue to explore this subject in the right direction. We better understand rivers and streams, and as engineers and fluvial geomorphologists, we can establish tools to help bring rivers alive. However, there is still a hunger for more scientific tools that we could use to further understand rivers and to support the development of healthy streams and rivers with high biodiversity in the present world, which has started to face water scarcity

    Proceedings of the International Workshop on Hydraulic Design of Low-Head Structures - IWLHS 2013

    Get PDF
    Scientific standards applicable to publication of BAWProceedings: http://izw.baw.de/publikationen/vzb_dokumente_oeffentlich/0/2020_07_BAW_Scientific_standards_conference_proceedings.pd

    Comparative analysis of machine learning and numerical modeling for combined heat transfer in Polymethylmethacrylate

    Full text link
    This study compares different methods to predict the simultaneous effects of conductive and radiative heat transfer in a Polymethylmethacrylate (PMMA) sample. PMMA is a kind of polymer utilized in various sensors and actuator devices. One-dimensional combined heat transfer is considered in numerical analysis. Computer implementation was obtained for the numerical solution of governing equation with the implicit finite difference method in the case of discretization. Kirchhoff transformation was used to get data from a non-linear equation of conductive heat transfer by considering monochromatic radiation intensity and temperature conditions applied to the PMMA sample boundaries. For Deep Neural Network (DNN) method, the novel Long Short Term Memory (LSTM) method was introduced to find accurate results in the least processing time than the numerical method. A recent study derived the combined heat transfers and their temperature profiles for the PMMA sample. Furthermore, the transient temperature profile is validated by another study. A comparison proves a perfect agreement. It shows the temperature gradient in the primary positions that makes a spectral amount of conductive heat transfer from a PMMA sample. It is more straightforward when they are compared with the novel DNN method. Results demonstrate that this artificial intelligence method is accurate and fast in predicting problems. By analyzing the results from the numerical solution it can be understood that the conductive and radiative heat flux is similar in the case of gradient behavior, but it is also twice in its amount approximately. Hence, total heat flux has a constant value in an approximated steady state condition. In addition to analyzing their composition, ROC curve and confusion matrix were implemented to evaluate the algorithm performance.Comment: 15 pages, 11 figure

    Marine Power Systems

    Get PDF
    Marine power systems have been designed to be a safer alternative to stationary plants in order to adhere to the regulations of classification societies. Marine steam boilers recently achieved 10 MPa pressure, in comparison to stationary plants, where a typical boiler pressure of 17 MPa was the standard for years. The latest land-based, ultra-supercritical steam boilers reach 25 MPa pressure and 620 °C temperatures, which increases plant efficiency and reduces fuel consumption. There is little chance that such a plant concept could be applied to ships. The reliability of marine power systems has to be higher due to the lack of available spare parts and services that are available for shore power systems. Some systems are still very expensive and are not able to be widely utilized for commercial merchant fleets such as COGAS, mainly due to the high cost of gas turbines. Submarine vehicles are also part of marine power systems, which have to be reliable and accurate in their operation due to their distant control centers. Materials that are used in marine environments are prone to faster corrosive wear, so special care also should be taken in this regard. The main aim of this Special Issue is to discuss the options and possibilities of utilizing energy in a more economical way, taking into account the reliability of such a system in operation

    Detecting anomalies in water distribution networks using EPR modelling paradigm

    Get PDF
    This is the author accepted manuscript. The final version is available from IWA Publishing via the DOI in this record.Sustainable management of water distribution networks (WDNs) requires effective exploitation of available data from pressure/flow devices. Water companies collect a large amount of such data, which need to be managed correctly and analysed effectively using appropriate techniques. Furthermore, water companies need to balance the data gathering and handling costs with the benefits of extracting useful information. Recent approaches implementing data mining techniques for analysing pressure/flow data appear very promising, because they can automate mundane tasks involved in data analysis process and efficiently deal with sensor data collected. Furthermore, they rely on empirical observations of a WDN behaviour over time, allowing reproducing/predicting possible future behaviour of the network. This paper investigates the effectiveness of the evolutionary polynomial regression (EPR) paradigm to reproduce the behaviour of a WDN using online data recorded by low-cost pressure/flow devices. Using data from a real district metered area, the case study presented shows that by using the EPR paradigm a model can be built which enables the accurate reproduction and prediction of the WDN behaviour over time and detection of flow anomalies due to possible unreported bursts or unknown increase of water withdrawal. Such an EPR model might be integrated into an early warning system to raise alarms when anomalies are detected.The research reported in this paper was founded by two projects of the Italian Scientific Research Program of National Interest PRIN-2012: ‘Analysis tools for management of water losses in urban aqueducts’ and ‘Tools and procedures for advanced and sustainable management of water distribution networks’
    • 

    corecore