57 research outputs found

    The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    Get PDF
    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data

    A study of digital holographic filters generation. Phase 2: Digital data communication system, volume 1

    Get PDF
    An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error

    Viterbi algorithm in continuous-phase frequency shift keying

    Get PDF
    The Viterbi algorithm, an application of dynamic programming, is widely used for estimation and detection problems in digital communications and signal processing. It is used to detect signals in communication channels with memory, and to decode sequential error-control codes that are used to enhance the performance of digital communication systems. The Viterbi algorithm is also used in speech and character recognition tasks where the speech signals or characters are modeled by hidden Markov models. This project explains the basics of the Viterbi algorithm as applied to systems in digital communication systems, and speech and character recognition. It also focuses on the operations and the practical memory requirements to implement the Viterbi algorithm in real-time. A forward error correction technique known as convolutional coding with Viterbi decoding was explored. In this project, the basic Viterbi decoder behavior model was built and simulated. The convolutional encoder, BPSK and AWGN channel were implemented in MATLAB code. The BER was tested to evaluate the decoding performance. The theory of Viterbi Algorithm is introduced based on convolutional coding. The application of Viterbi Algorithm in the Continuous-Phase Frequency Shift Keying (CPFSK) is presented. Analysis for the performance is made and compared with the conventional coherent estimator. The main issue of this thesis is to implement the RTL level model of Viterbi decoder. The RTL Viterbi decoder model includes the Branch Metric block, the Add-Compare-Select block, the trace-back block, the decoding block and next state block. With all done, we further understand about the Viterbi decoding algorithm

    Cancelamento de interferência em sistemas celulares distribuídos

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaO tema principal desta tese é o problema de cancelamento de interferência para sistemas multi-utilizador, com antenas distribuídas. Como tal, ao iniciar, uma visão geral das principais propriedades de um sistema de antenas distribuídas é apresentada. Esta descrição inclui o estudo analítico do impacto da ligação, dos utilizadores do sistema, a mais antenas distribuídas. Durante essa análise é demonstrado que a propriedade mais importante do sistema para obtenção do ganho máximo, através da ligação de mais antenas de transmissão, é a simetria espacial e que os utilizadores nas fronteiras das células são os mais bene ciados. Tais resultados são comprovados através de simulação. O problema de cancelamento de interferência multi-utilizador é considerado tanto para o caso unidimensional (i.e. sem codi cação) como para o multidimensional (i.e. com codi cação). Para o caso unidimensional um algoritmo de pré-codi cação não-linear é proposto e avaliado, tendo como objectivo a minimização da taxa de erro de bit. Tanto o caso de portadora única como o de multipla-portadora são abordados, bem como o cenário de antenas colocadas e distribuidas. É demonstrado que o esquema proposto pode ser visto como uma extensão do bem conhecido esquema de zeros forçados, cuja desempenho é provado ser um limite inferior para o esquema generalizado. O algoritmo é avaliado, para diferentes cenários, através de simulação, a qual indica desempenho perto do óptimo, com baixa complexidade. Para o caso multi-dimensional um esquema para efectuar "dirty paper coding" binário, tendo como base códigos de dupla camada é proposto. No desenvolvimento deste esquema, a compressão com perdas de informação, é considerada como um subproblema. Resultados de simulação indicam transmissão dedigna proxima do limite de Shannon.This thesis focus on the interference cancellation problem for multiuser distributed antenna systems. As such it starts by giving an overview of the main properties of a distributed antenna system. This overview includes, an analytical investigation of the impact of the connection of additional distributed antennas, to the system users. That analysis shows that the most important system property to reach the maximum gain, with the connection of additional transmit antennas, is spatial symmetry and that the users at the cell borders are the most bene ted. The multiuser interference problem has been considered for both the one dimensional (i.e. without coding) and multidimensional (i.e. with coding) cases. In the unidimensional case, we propose and evaluate a nonlinear precoding algorithm for the minimization of the bit-error-rate, of a multiuser MIMO system. Both the single-carrier and multi-carrier cases are tackled as well as the co-located and distributed scenarios. It is demonstrated that the proposed scheme can be viewed as an extension of the well-known zero-forcing, whose performance is proven to be a lower bound for the generalized scheme. The algorithm was validated extensively through numerical simulations, which indicate a performance close to the optimal, with reduced complexity. For the multi-dimensional case, a binary dirty paper coding scheme, base on bilayer codes, is proposed. In the development of this scheme, we consider the lossy compression of a binary source as a sub-problem. Simulation results indicate reliable transmission close to the Shannon limit

    CAMAC bulletin: A publication of the ESONE Committee Issue #4 July 1972

    Get PDF
    CAMAC is a means of interconnecting many peripheral devices through a digital data highway to a data processing device such as a computer

    CAMAC bulletin: A publication of the ESONE Committee Issue #13 September 1975

    Get PDF
    CAMAC is a means of interconnecting many peripheral devices through a digital data highway to a data processing device such as a computer

    ON REDUCING THE DECODING COMPLEXITY OF SHINGLED MAGNETIC RECORDING SYSTEM

    Get PDF
    Shingled Magnetic Recording (SMR) has been recognised as one of the alternative technologies to achieve an areal density beyond the limit of the perpendicular recording technique, 1 Tb/in2, which has an advantage of extending the use of the conventional method media and read/write head. This work presents SMR system subject to both Inter Symbol Interference (ISI) and Inter Track Interference (ITI) and investigates different equalisation/detection techniques in order to reduce the complexity of this system. To investigate the ITI in shingled systems, one-track one-head system model has been extended into two-track one-head system model to have two interfering tracks. Consequently, six novel decoding techniques have been applied to the new system in order to find the Maximum Likelihood (ML) sequence. The decoding complexity of the six techniques has been investigated and then measured. The results show that the complexity is reduced by more than three times with 0.5 dB loss in performance. To measure this complexity practically, perpendicular recording system has been implemented in hardware. Hardware architectures are designed for that system with successful Quartus II fitter which are: Perpendicular Magnetic Recording (PMR) channel, digital filter equaliser with and without Additive White Gaussian Noise (AWGN) and ideal channel architectures. Two different hardware designs are implemented for Viterbi Algorithm (VA), however, Quartus II fitter for both of them was unsuccessful. It is found that, Simulink/Digital Signal Processing (DSP) Builder based designs are not efficient for complex algorithms and the eligible solution for such designs is writing Hardware Description Language (HDL) codes for those algorithms.The Iraqi Governmen

    Polar-Coded OFDM with Index Modulation

    Get PDF
    Polar codes, as the first error-correcting codes with an explicit construction to provably achieve thesymmetric capacity of memoryless channels, which are constructed based on channel polarization, have recently become a primary contender in communication networks for achieving tighter requirements with relatively low complexity. As one of the contributions in this thesis, three modified polar decoding schemes are proposed. These schemes include enhanced versions of successive cancellation-flip (SC-F), belief propagation (BP), and sphere decoding (SD). The proposed SC-F utilizes novel potential incorrect bits selection criteria and stack to improve its error correction performance. Next, to make the decoding performance of BP better, permutation and feedback structure are utilized. Then, in order to reduce the complexity without compromising performance, a SD by using novel decoding strategies according to modified path metric (PM) and radius extension is proposed. Additionally, to solve the problem that BP has redundant iterations, a new stopping criterion based on bit different ratio (BDR) is proposed. According to the simulation results and mathematical proof, all proposed schemes can achieve corresponding performance improvement or complexity reduction compared with existing works. Beside applying polar coding, to achieve a reliable and flexible transmission in a wireless communication system, a modified version of orthogonal frequency division multiplexing (OFDM) modulation based on index modulation, called OFDM-in-phase/quadrature-IM (OFDM-I/Q-IM), is applied. This modulation scheme can simultaneously improve spectral efficiency and bit-error rate (BER) performance with great flexibility in design and implementation. Hence, OFDM-I/Q-IM is considered as a potential candidate in the new generation of cellular networks. As the main contribution in this work, a polar-coded OFDM-I/Q-IM system is proposed. The general design guidelines for overcoming the difficulties associated with the application of polar codes in OFDM-I/Q-IM are presented. In the proposed system, at the transmitter, we employ a random frozen bits appending scheme which not only makes the polar code compatible with OFDM-I/Q-IM but also improves the BER performance of the system. Furthermore, at the receiver, it is shown that the \textit{a posteriori} information for each index provided by the index detector is essential for the iterative decoding of polar codes by the BP algorithm. Simulation results show that the proposed polar-coded OFDM-I/Q-IM system outperforms its OFDM counterpart in terms of BER performance
    corecore