4 research outputs found

    Estrategias de paralización para la optimización de métodos computacionales en el descubrimiento de nuevos fármacos.

    Get PDF
    El descubrimiento de fármacos es un proceso largo y costoso que involucra varias etapas; entre ellas destaca la identificación de candidatos a fármacos; es decir moléculas potencialmente activas para neutralizar una determinada proteína involucrada en una enfermedad. Esta etapa se fundamenta en la optimización del acoplamiento molecular entre un receptor y un ingente número de candidatos a fármacos, para determinar cuál de estos candidatos obtiene una mayor intensidad en el acoplamiento. El acoplamiento molecular entre dos compuestos bioactivos está sujeto a una serie de fenómenos físicos presentes en la naturaleza y que se modelan a través de una función de scoring. Estos modelos representan los comportamientos de las moléculas en la naturaleza, permitiendo trasladar esta interacción molecular a una simulación en plataformas computacionales de silicio. Esta tesis doctoral plantea la aceleración y mejora de los métodos de descubrimiento de nuevos fármacos mediante técnicas de inteligencia artificial y paralelismo. Se propone un esquema metaheurístico parametrizado y paralelo que determine la interacción molecular entre compuestos bioactivos. Las técnicas metaheurísticas son técnicas algorítmicas empleadas, generalmente, en la optimización de cualquier tipo de problema, proporcionando soluciones satisfactorias. Algunos ejemplos de metaheurísticas incluyen búsquedas locales; que centran su campo de actuación a su entorno de soluciones (vecinos) más cercanos; búsquedas basadas en poblaciones muy utilizadas en la simulación de procesos biológicos y entre los que destacan los algoritmos evolutivos o las búsquedas dispersas por mencionar algunos ejemplos. Los esquemas parametrizados de metaheurísticas definen una serie de funciones básicas (Inicializar, Fin, Seleccionar, Combinar, Mejorar e Incluir) a fin de parametrizar el tipo de metaheurística concreta a instanciar en cada ejecución de la aplicación, permitiendo así no sólo la optimización del problema a resolver, sino también del algoritmo empleado para su resolución. Trabajar con una combinación de parámetros u otra es un factor vital para encontrar una buena solución al problema. Para abordar este número elevado de parámetros necesitamos alguna estrategia para este nuevo problema de optimización que surge. Esta estrategia es la hiperheurística, que busca la mejor de entre un conjunto de metaheurísticas aplicadas a un mismo problema. La gran mayoría de algoritmos metaheurísticos son, por definición, masivamente paralelos, y por tanto su implementación en plataformas secuenciales compromete tanto la eficiencia como la eficacia de los mismos. En ésta tesis doctoral se adapta además la instanciación del esquema metaheurístico a plataformas masivamente paralelas y heterogéneas como procesadores de memoria compartida y tarjetas gráficas. Las técnicas masivamente paralelas en GPU con soporte CUDA ayudan a realizar estos cálculos poniendo a disposición de la aplicación miles de núcleos capaces de funcionar en paralelo y, además, con la posibilidad de compartir memoria entre ellos y así reducir aún más los accesos a memoria. Aun así, existen compuestos celulares de decenas de miles de átomos para los que el uso de una sola GPU puede ser insuficiente, convirtiéndola en un cuello de botella. Esto hace necesario extender el esquema a multiGPU para dividir la carga computacional y poder abordar este tipo de compuestos con suficientes garantías de rendimiento. Para mejorar el rendimiento y maximizar la paralelización de la aplicación, es fundamental aprovechar al máximo los recursos que nos ofrece la máquina, por ello, se realiza un trabajo previo para ajustar los parámetros de la opción paralela elegida al entorno de ejecución y trabajar con los parámetros que mejor se adapten a la máquina. En un nodo, podemos tener un número limitado de GPUs, y para simular una molécula podemos obtener buenos rendimientos, pero en el problema de descubrimiento de fármacos, podemos tener millones de candidatos a fármacos con los que simular. En este caso, escalamos a un clúster de cómputo. Uno de los enfoques tomados por la comunidad para aprovechar todos los recursos de un clúster de computadores, de manera transparente al usuario, ha sido la virtualización del sistema. Entornos como (VMWARE, XEN) virtualizan todo el sistema y no solo una parte, siendo muy inadecuado en entornos de computación de alto rendimiento, ya que las restricciones a que deben someterse al ser un entorno compartido, introducen una sobrecarga que no es posible asumir. En lugar de virtualizar todo el sistema, sería virtualizar solo un conjunto de recursos específicos, como las GPUs. Este trabajo lo realiza un middleware muy potente denominado rCUDA. Este software permite el uso simultáneo y remoto de GPUs con soporte CUDA. Para habilitar la aceleración remota de GPUs, este software del sistema crea dispositivos virtuales compatibles con CUDA en máquinas sin GPUs locales. Además, rCUDA aporta una reducción de la complejidad algorítmica, evitando utilizar técnicas basadas en paso de mensajes (MPI), muy utilizadas en este tipo de entornos de cómputo. Las técnicas algorítmicas que se van a desarrollar, van a posibilitar la elección de las diferentes plataformas de cómputo disponibles optimizando el entorno de ejecución y, balanceando la carga de trabajo con los parámetros de configuración más idóneos.Ingeniería, Industria y Construcció

    A Step Closer to Precision Oncology: Computational, Biochemical, and Cell-Based Screening to Find Compounds that Stabilize p53

    Get PDF
    Personalized medicine in cancer aims to tailor a treatment plan that takes into account the unique features of a patient's malignancy. One therapeutic target that has a chance to affect a large population of cancer patients is p53. p53 is a tumor suppressor that activates senescence or apoptosis in cells that have accumulated mutations that could lead to cancer. Half of all cancers have mutations in p53, which highlights the importance of its role in disease. A subset of these mutations have been shown to inhibit p53 function by destabilizing p53's core domain. This led to the hypothesis that a personalized drug for patients with this type of destabilized p53 mutation could lead to apoptosis in cancer cells. There has been a lot of evidence supporting this hypothesis. This evidence has inspired many researchers to screen for small molecules that stabilize p53 mutants and rescue function. However, the hits discovered in these screens (with one potential exception) have not been found to be adequate drug leads for several reasons. Many have turned out to rescue function, but not by directly binding p53. Others bind p53, but either lack sufficient binding affinity or cause nonspecific cell responses. All of these are likely to induce side effects if used as part of a cancer therapeutic. This leads to the question: Is there a better way to find a small molecule stabilizer for cancer-associated mutants of p53? Here, I present an alternative approach that focuses on finding a direct binder to p53's core domain in order to avoid off-target effects. Our initial step was a computational approach that uses the crystal structure of p53's core domain in order to virtually screen a set of small molecules for binding. I found a novel pocket on the protein structure that I predicted to be druggable, because the site readily forms pockets during simulations of the core domain. I performed a virtual screen using the DARC, a docking tool from the molecular modeling suite, Rosetta, and selected the 28 best ranked compounds for biochemical testing with purified p53 using two different cancer-associated, destabilizing mutations. Surprisingly, I found that 11 of the 28 compounds stabilized both mutants. Further testing was done in cancer cell lines showing that 7 compounds activated p53 transcription of p21 and PUMA, which are known targets of p53. Using the fluorescent antibody pAb 1620 that binds natively folded p53, we showed that 4 of the compounds lead to a much higher concentration of folded p53 in cells. The excitingly high hit rate was found from a modest sized initial virtual screen of only 64,000 molecules. This suggests that this novel pocket is prone to bind molecules in a manner that rescues structure and function, and should be as a starting point for a larger screen. Also, the compounds from the current screen are intriguing hits that will be further analyzed and optimized to develop new stabilizers of p53

    IN SILICO METHODS FOR DRUG DESIGN AND DISCOVERY

    Get PDF
    Computer-aided drug design (CADD) methodologies are playing an ever-increasing role in drug discovery that are critical in the cost-effective identification of promising drug candidates. These computational methods are relevant in limiting the use of animal models in pharmacological research, for aiding the rational design of novel and safe drug candidates, and for repositioning marketed drugs, supporting medicinal chemists and pharmacologists during the drug discovery trajectory.Within this field of research, we launched a Research Topic in Frontiers in Chemistry in March 2019 entitled “In silico Methods for Drug Design and Discovery,” which involved two sections of the journal: Medicinal and Pharmaceutical Chemistry and Theoretical and Computational Chemistry. For the reasons mentioned, this Research Topic attracted the attention of scientists and received a large number of submitted manuscripts. Among them 27 Original Research articles, five Review articles, and two Perspective articles have been published within the Research Topic. The Original Research articles cover most of the topics in CADD, reporting advanced in silico methods in drug discovery, while the Review articles offer a point of view of some computer-driven techniques applied to drug research. Finally, the Perspective articles provide a vision of specific computational approaches with an outlook in the modern era of CADD

    Application of parallel blind docking with BINDSURF for the study of platinum derived compounds as anticancer drugs

    No full text
    Abstract. The clinical use of platinum(II)-based drugs incurs serious side effects due to the non-specific reactions with both malignant and normal cells. To circumvent such major drawback, novel metallodrugs might be combined with suitable carrier molecules, as antibodies, to ensure selective attacks on tumors while sparing healthy tissues. In this contribution, we investigate the stability of a novel Pt(II) drug embedded in Herceptin, an antibody able to reconise the breast cancer cells, by using a parallel blind docking approach called BINDSURF. Our calculations reveal the main ligand-protein interactions in the binding pocket. The reported data can be therefore used to further rationalise the synthesis of improved drugs beyond classical cisplatin derivatives
    corecore