10,256 research outputs found

    Modelling chemotherapy resistance in palliation and failed cure

    Get PDF
    The goal of palliative cancer chemotherapy treatment is to prolong survival and improve quality of life when tumour eradication is not feasible. Chemotherapy protocol design is considered in this context using a simple, robust, model of advanced tumour growth with Gompertzian dynamics, taking into account the effects of drug resistance. It is predicted that reduced chemotherapy protocols can readily lead to improved survival times due to the effects of competition between resistant and sensitive tumour cells. Very early palliation is also predicted to quickly yield near total tumour resistance and thus decrease survival duration. Finally, our simulations indicate that failed curative attempts using dose densification, a common protocol escalation strategy, can reduce survival times

    Search algorithms as a framework for the optimization of drug combinations

    Get PDF
    Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms, originally developed for digital communication, modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs with only one third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6-9 interventions in 80-90% of tests, compared with 15-30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.Comment: 36 pages, 10 figures, revised versio

    An application of genetic algorithms to chemotherapy treatment.

    Get PDF
    The present work investigates methods for optimising cancer chemotherapy within the bounds of clinical acceptability and making this optimisation easily accessible to oncologists. Clinical oncologists wish to be able to improve existing treatment regimens in a systematic, effective and reliable way. In order to satisfy these requirements a novel approach to chemotherapy optimisation has been developed, which utilises Genetic Algorithms in an intelligent search process for good chemotherapy treatments. The following chapters consequently address various issues related to this approach. Chapter 1 gives some biomedical background to the problem of cancer and its treatment. The complexity of the cancer phenomenon, as well as the multi-variable and multi-constrained nature of chemotherapy treatment, strongly support the use of mathematical modelling for predicting and controlling the development of cancer. Some existing mathematical models, which describe the proliferation process of cancerous cells and the effect of anti-cancer drugs on this process, are presented in Chapter 2. Having mentioned the control of cancer development, the relevance of optimisation and optimal control theory becomes evident for achieving the optimal treatment outcome subject to the constraints of cancer chemotherapy. A survey of traditional optimisation methods applicable to the problem under investigation is given in Chapter 3 with the conclusion that the constraints imposed on cancer chemotherapy and general non-linearity of the optimisation functionals associated with the objectives of cancer treatment often make these methods of optimisation ineffective. Contrariwise, Genetic Algorithms (GAs), featuring the methods of evolutionary search and optimisation, have recently demonstrated in many practical situations an ability to quickly discover useful solutions to highly-constrained, irregular and discontinuous problems that have been difficult to solve by traditional optimisation methods. Chapter 4 presents the essence of Genetic Algorithms, as well as their salient features and properties, and prepares the ground for the utilisation of Genetic Algorithms for optimising cancer chemotherapy treatment. The particulars of chemotherapy optimisation using Genetic Algorithms are given in Chapter 5 and Chapter 6, which present the original work of this thesis. In Chapter 5 the optimisation problem of single-drug chemotherapy is formulated as a search task and solved by several numerical methods. The results obtained from different optimisation methods are used to assess the quality of the GA solution and the effectiveness of Genetic Algorithms as a whole. Also, in Chapter 5 a new approach to tuning GA factors is developed, whereby the optimisation performance of Genetic Algorithms can be significantly improved. This approach is based on statistical inference about the significance of GA factors and on regression analysis of the GA performance. Being less computationally intensive compared to the existing methods of GA factor adjusting, the newly developed approach often gives better tuning results. Chapter 6 deals with the optimisation of multi-drug chemotherapy, which is a more practical and challenging problem. Its practicality can be explained by oncologists' preferences to administer anti-cancer drugs in various combinations in order to better cope with the occurrence of drug resistant cells. However, the imposition of strict toxicity constraints on combining various anticancer drugs together, makes the optimisation problem of multi-drug chemotherapy very difficult to solve, especially when complex treatment objectives are considered. Nevertheless, the experimental results of Chapter 6 demonstrate that this problem is tractable to Genetic Algorithms, which are capable of finding good chemotherapeutic regimens in different treatment situations. On the basis of these results a decision has been made to encapsulate Genetic Algorithms into an independent optimisation module and to embed this module into a more general and user-oriented environment - the Oncology Workbench. The particulars of this encapsulation and embedding are also given in Chapter 6. Finally, Chapter 7 concludes the present work by summarising the contributions made to the knowledge of the subject treated and by outlining the directions for further investigations. The main contributions are: (1) a novel application of the Genetic Algorithm technique in the field of cancer chemotherapy optimisation, (2) the development of a statistical method for tuning the values of GA factors, and (3) the development of a robust and versatile optimisation utility for a clinically usable decision support system. The latter contribution of this thesis creates an opportunity to widen the application domain of Genetic Algorithms within the field of drug treatments and to allow more clinicians to benefit from utilising the GA optimisation

    The influence of toxicity constraints in models of chemotherapeutic protocol escalation

    Get PDF
    The prospect of exploiting mathematical and computational models to gain insight into the influence of scheduling on cancer chemotherapeutic effectiveness is increasingly being considered. However, the question of whether such models are robust to the inclusion of additional tumour biology is relatively unexplored. In this paper, we consider a common strategy for improving protocol scheduling that has foundations in mathematical modelling, namely the concept of dose densification, whereby rest phases between drug administrations are reduced. To maintain a manageable scope in our studies, we focus on a single cell cycle phase-specific agent with uncomplicated pharmacokinetics, as motivated by 5-Fluorouracil-based adjuvant treatments of liver micrometastases. In particular, we explore predictions of the effectiveness of dose densification and other escalations of the protocol scheduling when the influence of toxicity constraints, cell cycle phase specificity and the evolution of drug resistance are all represented within the modelling. For our specific focus, we observe that the cell cycle and toxicity should not simply be neglected in modelling studies. Our explorations also reveal the prediction that dose densification is often, but not universally, effective. Furthermore, adjustments in the duration of drug administrations are predicted to be important, especially when dose densification in isolation does not yield improvements in protocol outcomes

    On Probabilistic Certification of Combined Cancer Therapies Using Strongly Uncertain Models

    Full text link
    This paper proposes a general framework for probabilistic certification of cancer therapies. The certification is defined in terms of two key issues which are the tumor contraction and the lower admissible bound on the circulating lymphocytes which is viewed as indicator of the patient health. The certification is viewed as the ability to guarantee with a predefined high probability the success of the therapy over a finite horizon despite of the unavoidable high uncertainties affecting the dynamic model that is used to compute the optimal scheduling of drugs injection. The certification paradigm can be viewed as a tool for tuning the treatment parameters and protocols as well as for getting a rational use of limited or expensive drugs. The proposed framework is illustrated using the specific problem of combined immunotherapy/chemotherapy of cancer.Comment: Submitted to Journal of theoretical Biolog

    Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer

    Get PDF
    Background : Preoperative radiotherapy (RT) decreases local recurrence rate and improves survival in stage II and III rectal cancer patients. The combination of chemotherapy with RT has a sound radiobiological rationale, and phase II trials of combined chemoradiation (CRT) have shown promising activity in rectal cancer. Objectives : To compare preoperative RT with preoperative CRT in patients with resectable stage II and III rectal cancer. Search methods : We searched the Cochrane Register of Controlled Trials, Web of Science, Embase.com, and Pubmed from 1975 until June 2012. A manual search was performed of Ann Surg, Arch Surg, Cancer, J Clin Oncol, Int J Radiat Oncol Biol Phys and the proceedings of ASTRO, ECCO and ASCO from 1990 until June 2012. Selection criteria : Relevant studies randomized resectable stage II or III rectal cancer patients to at least one arm of preoperative RT alone or at least one arm of preoperative CRT. Data collection and analysis : Primary outcome parameters included overall survival (OS) at 5 years and local recurrence (LR) rate at 5 years. Secondary outcome parameters included disease free survival (DFS) at 5 years, metastasis rate, pathological complete response rate, clinical response rate, sphincter preservation rate, acute toxicity, postoperative mortality and morbidity, and anastomotic leak rate. Outcome parameters were summarized using the Odds Ratio (OR) and associated 95% confidence interval (CI) using the fixed effects model. Main results : Five trials were identified and included in the meta-analysis. From one of the included trials only preliminary data are reported. The addition of chemotherapy to preoperative RT significantly increased grade III and IV acute toxicity (OR 1.68-10, P = 0.002) and marginally affected postoperative overall morbidity (OR 0.67-1.00, P = 0.05) while no differences were observed in postoperative mortality or anastomotic leak rate. Compared to preoperative RT alone, preoperative CRT significantly increased the rate of complete pathological response (OR 2.12-5.84, P < 0.00001) although this did not translate into a higher sphincter preservation rate (OR 0.92-1.30, P = 0.32). The incidence of local recurrence at five years was significantly lower in the CRT group compared to RT alone (OR 0.39-0.72, P < 0.001). No statistically significant differences were observed in DFS (OR 0.92-1.34, P = 0.27) or OS (OR 0.79-1.14, P = 0.58) at five years. Authors' conclusions : Compared to preoperative RT alone, preoperative CRT enhances pathological response and improves local control in resectable stage II and III rectal cancer, but does not benefit disease free or overall survival. The effects of preoperative CRT on functional outcome and quality of life are incompletely understood and should be addressed in future trials
    corecore