1,645 research outputs found

    Development of new high-performance induction heating systems using model predictive control

    Get PDF
    Modern induction heating systems involve usually many non-linear systems with different constraints, making difficult implementing classical controllers. In this context, model predictive control arises as a powerful technique able to provide high performance controllers with advanced functionalities. This paper will discuss the benefits of this control technique for induction heating systems and will provide an example of application for domestic systems. As a conclusion, MPC will help powering future induction heating systems with improved control capabilities and performance

    Fractional-Order PID Controllers for Temperature Control:A Review

    Get PDF
    Fractional-order proportional integral derivative (FOPID) controllers are becoming increasingly popular for various industrial applications due to the advantages they can offer. Among these applications, heating and temperature control systems are receiving significant attention, applying FOPID controllers to achieve better performance and robustness, more stability and flexibility, and faster response. Moreover, with several advantages of using FOPID controllers, the improvement in heating systems and temperature control systems is exceptional. Heating systems are characterized by external disturbance, model uncertainty, non-linearity, and control inaccuracy, which directly affect performance. Temperature control systems are used in industry, households, and many types of equipment. In this paper, fractional-order proportional integral derivative controllers are discussed in the context of controlling the temperature in ambulances, induction heating systems, control of bioreactors, and the improvement achieved by temperature control systems. Moreover, a comparison of conventional and FOPID controllers is also highlighted to show the improvement in production, quality, and accuracy that can be achieved by using such controllers. A composite analysis of the use of such controllers, especially for temperature control systems, is presented. In addition, some hidden and unhighlighted points concerning FOPID controllers are investigated thoroughly, including the most relevant publications

    Depth estimation of inner wall defects by means of infrared thermography

    Get PDF
    There two common methods dealing with interpreting data from infrared thermography: qualitatively and quantitatively. On a certain condition, the first method would be sufficient, but for an accurate interpretation, one should undergo the second one. This report proposes a method to estimate the defect depth quantitatively at an inner wall of petrochemical furnace wall. Finite element method (FEM) is used to model multilayer walls and to simulate temperature distribution due to the existence of the defect. Five informative parameters are proposed for depth estimation purpose. These parameters are the maximum temperature over the defect area (Tmax-def), the average temperature at the right edge of the defect (Tavg-right), the average temperature at the left edge of the defect (Tavg-left), the average temperature at the top edge of the defect (Tavg-top), and the average temperature over the sound area (Tavg-so). Artificial Neural Network (ANN) was trained with these parameters for estimating the defect depth. Two ANN architectures, Multi Layer Perceptron (MLP) and Radial Basis Function (RBF) network were trained for various defect depths. ANNs were used to estimate the controlled and testing data. The result shows that 100% accuracy of depth estimation was achieved for the controlled data. For the testing data, the accuracy was above 90% for the MLP network and above 80% for the RBF network. The results showed that the proposed informative parameters are useful for the estimation of defect depth and it is also clear that ANN can be used for quantitative interpretation of thermography data

    The potential of fractional order distributed MPC applied to steam/water loop in large scale ships

    Get PDF
    The steam/water loop is a crucial part of a steam power plant. However, satisfying control performance is difficult to obtain due to the frequent disturbance and load fluctuation. A fractional order model predictive control was studied in this paper to improve the control performance of the steam/water loop. Firstly, the dynamic of the steam/water loop was introduced in large-scale ships. Then, the model predictive control with an extended prediction self adaptive controller framework was designed for the steam/water loop with a distributed scheme. Instead of an integer cost function, a fractional order cost function was applied in the model predictive control optimization step. The superiority of the fractional order model predictive control was validated with reference tracking and load fluctuation experiments

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Model-based glass melter control

    Get PDF

    RSME 2011. Transfer and Industrial Mathematics. Proceedings of the RSME Conference on Transfer and Industrial Mathematics. Santiago de Compostela, July 12-14, 2011

    Get PDF
    [EN] The RSME Conference on Transfer and Industrial Mathematics is supported by the Royal Spanish Mathematical Society, a scientific society for the promotion of mathematics and its applications as well as the encouragement of research and teaching at all educational levels. The three-day conference presents successful experiences in the field of mathematical knowledge transfer to industry and focuses on the following issues: — Showing how collaboration with industry has opened up new lines of research in the field of mathematics providing high quality contributions to international journals and encouraging the development of doctoral theses. — How the promotion of existing infrastructures has contributed to enhance the transfer of mathematical knowledge to industry. — The presentation of postgraduate programs offering training in mathematics with industrial applications. The conference includes talks from researchers and industry representatives who present their different points of view and experiences with regards to the transfer of mathematical knowledge to industry

    Modern approaches to control of a multiple hearth furnace in kaolin production

    Get PDF
    The aim of this thesis is to improve the overall efficiency of the multiple hearth furnace (MHF) in kaolin calcination by developing control strategies which incorporate machine learning based soft sensors to estimate mineralogy related constraints in the control strategy. The objective of the control strategy is to maximize the capacity of the furnace and minimize energy consumption while maintaining the product quality of the calcined kaolin. First, the description of the process of interest is given, highlighting the control strategy currently implemented at the calciner studied in this work. Next, the state of the art on control of calcination furnaces is presented and discussed. Then, the description of the mechanistic model of the MHF, which plays a key role in the testing environment, is provided and an analysis of the MHF dynamic behavior based on the industrial and simulated data is presented. The design of the mineralogy-driven control strategy for the multiple hearth furnace and its implementation in the simulation environment are also outlined. The analysis of the results is then presented. Furthermore, the extensive sampling campaign for testing the soft sensors and the control strategy logic of the industrial MHF is reported, and the results are analyzed and discussed. Finally, an introduction to Model Predictive Control (MPC) is presented, the design of the Linear MPC framework for the MHF in kaolin calcination is described and discussed, and future research is outlined

    Modeling and Simulation of Metallurgical Processes in Ironmaking and Steelmaking

    Get PDF
    In recent years, improving the sustainability of the steel industry and reducing its CO2 emissions has become a global focus. To achieve this goal, further process optimization in terms of energy and resource efficiency and the development of new processes and process routes are necessary. Modeling and simulation have established themselves as invaluable sources of information for otherwise unknown process parameters and as an alternative to plant trials that involves lower costs, risks, and time. Models also open up new possibilities for model-based control of metallurgical processes. This Special Issue focuses on recent advances in the modeling and simulation of unit processes in iron and steelmaking. It includes reviews on the fundamentals of modeling and simulation of metallurgical processes, as well as contributions from the areas of iron reduction/ironmaking, steelmaking via the primary and secondary route, and continuous casting
    • …
    corecore