217 research outputs found

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: a critical review

    Get PDF
    With the predicted depletion of natural resources and alarming environmental issues, sustainable development has become a popular as well as a much-needed concept in modern process industries. Hence, manufacturers are quite keen on adopting novel process monitoring techniques to enhance product quality and process efficiency while minimizing possible adverse environmental impacts. Hardware sensors are employed in process industries to aid process monitoring and control, but they are associated with many limitations such as disturbances to the process flow, measurement delays, frequent need for maintenance, and high capital costs. As a result, soft sensors have become an attractive alternative for predicting quality-related parameters that are ‘hard-to-measure’ using hardware sensors. Due to their promising features over hardware counterparts, they have been employed across different process industries. This article attempts to explore the state-of-the-art artificial intelligence (Al)-driven soft sensors designed for process industries and their role in achieving the goal of sustainable development. First, a general introduction is given to soft sensors, their applications in different process industries, and their significance in achieving sustainable development goals. AI-based soft sensing algorithms are then introduced. Next, a discussion on how AI-driven soft sensors contribute toward different sustainable manufacturing strategies of process industries is provided. This is followed by a critical review of the most recent state-of-the-art AI-based soft sensors reported in the literature. Here, the use of powerful AI-based algorithms for addressing the limitations of traditional algorithms, that restrict the soft sensor performance is discussed. Finally, the challenges and limitations associated with the current soft sensor design, application, and maintenance aspects are discussed with possible future directions for designing more intelligent and smart soft sensing technologies to cater the future industrial needs

    Latent variable modeling approaches to assist the implementation of quality-by-design paradigms in pharmaceutical development and manufacturing

    Get PDF
    With the introduction of the Quality-by-Design (QbD) initiative, the American Food and Drug Administration and the other pharmaceutical regulatory Agencies aimed to change the traditional approaches to pharmaceutical development and manufacturing. Pharmaceutical companies have been encouraged to use systematic and science-based tools for the design and control of their processes, in order to demonstrate a full understanding of the driving forces acting on them. From an engineering perspective, this initiative can be seen as the need to apply modeling tools in pharmaceutical development and manufacturing activities. The aim of this Dissertation is to show how statistical modeling, and in particular latent variable models (LVMs), can be used to assist the practical implementation of QbD paradigms to streamline and accelerate product and process design activities in pharmaceutical industries, and to provide a better understanding and control of pharmaceutical manufacturing processes. Three main research areas are explored, wherein LVMs can be applied to support the practical implementation of the QbD paradigms: process understanding, product and process design, and process monitoring and control. General methodologies are proposed to guide the use of LVMs in different applications, and their effectiveness is demonstrated by applying them to industrial, laboratory and simulated case studies. With respect to process understanding, a general methodology for the use of LVMs is proposed to aid the development of continuous manufacturing systems. The methodology is tested on an industrial process for the continuous manufacturing of tablets. It is shown how LVMs can model jointly data referred to different raw materials and different units in the production line, allowing to understand which are the most important driving forces in each unit and which are the most critical units in the line. Results demonstrate how raw materials and process parameters impact on the intermediate and final product quality, enabling to identify paths along which the process moves depending on its settings. This provides a tool to assist quality risk assessment activities and to develop the control strategy for the process. In the area of product and process design, a general framework is proposed for the use of LVM inversion to support the development of new products and processes. The objective of model inversion is to estimate the best set of inputs (e.g., raw material properties, process parameters) that ensure a desired set of outputs (e.g., product quality attributes). Since the inversion of an LVM may have infinite solutions, generating the so-called null space, an optimization framework allowing to assign the most suitable objectives and constraints is used to select the optimal solution. The effectiveness of the framework is demonstrated in an industrial particle engineering problem to design the raw material properties that are needed to produce granules with desired characteristics from a high-shear wet granulation process. Results show how the framework can be used to design experiments for new products design. The analogy between the null space and the Agencies’ definition of design space is also demonstrated and a strategy to estimate the uncertainties in the design and in the null space determination is provided. The proposed framework for LVM inversion is also applied to assist the design of the formulation for a new product, namely the selection of the best excipient type and amount to mix with a given active pharmaceutical ingredient (API) to obtain a blend of desired properties. The optimization framework is extended to include constraints on the material selection, the API dose or the final tablet weight. A user-friendly interface is developed to aid formulators in providing the constraints and objectives of the problem. Experiments performed industrially on the formulation designed in-silico confirm that model predictions are in good agreement with the experimental values. LVM inversion is shown to be useful also to address product transfer problems, namely the problem of transferring the manufacturing of a product from a source plant, wherein most of the experimentation has been carried out, to a target plant which may differ for size, lay-out or involved units. An experimental process for pharmaceutical nanoparticles production is used as a test bed. An LVM built on different plant data is inverted to estimate the most suitable process conditions in a target plant to produce nanoparticles of desired mean size. Experiments designed on the basis of the proposed LVM inversion procedure demonstrate that the desired nanoparticles sizes are obtained, within experimental uncertainty. Furthermore, the null space concept is validated experimentally. Finally, with respect to the process monitoring and control area, the problem of transferring monitoring models between different plants is studied. The objective is to monitor a process in a target plant where the production is being started (e.g., a production plant) by exploiting the data available from a source plant (e.g., a pilot plant). A general framework is proposed to use LVMs to solve this problem. Several scenarios are identified on the basis of the available information, of the source of data and on the type of variables to include in the model. Data from the different plants are related through subsets of variables (common variables) measured in both plants, or through plant-independent variables obtained from conservation balances (e.g., dimensionless numbers). The framework is applied to define the process monitoring model for an industrial large-scale spray-drying process, using data available from a pilot-scale process. The effectiveness of the transfer is evaluated in terms of monitoring performances in the detection of a real fault occurring in the target process. The proposed methodologies are then extended to batch systems, considering a simulated penicillin fermentation process. In both cases, results demonstrate that the transfer of knowledge from the source plant enables better monitoring performances than considering only the data available from the target plant

    State estimators in soft sensing and sensor fusion for sustainable manufacturing

    Get PDF
    State estimators, including observers and Bayesian filters, are a class of model-based algorithms for estimating variables in a dynamical system given sensor measurements of related system states. They can be used to derive fast and accurate estimates of system variables which cannot be measured directly (’soft sensing’) or for which only noisy, intermittent, delayed, indirect or unreliable measurements are available, perhaps from multiple sources (’sensor fusion’). In this paper we introduce the concepts and main methods of state estimation and review recent applications in improving the sustainability of manufacturing processes. It is shown that state estimation algorithms can play a key role in manufacturing systems to accurately monitor and control processes to improve efficiencies, lower environmental impact, enhance product quality, improve the feasibility of processing more sustainable raw materials, and ensure safer working environments for humans. We discuss current and emerging trends in using state estimation as a framework for combining physical knowledge with other sources of data for monitoring and control of distributed manufacturing systems

    The Principal Problem with Principal Components Regression

    Get PDF
    Principal components regression (PCR) reduces a large number of explanatory variables down to a small number of principal components. PCR is thought to be more useful, the more numerous the potential explanatory variables. The reality is that a large number of candidate explanatory variables does not make PCR more valuable; instead, it magnifies the failings of PCR

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation

    Structural health monitoring damage detection systems for aerospace

    Get PDF
    • …
    corecore