1,044 research outputs found

    PI-tuned UPFC damping controllers design for multi-machine power system

    Get PDF
    This paper presents an adaptive multi-objective algorithm based Unified Power Flow Controller (UPFC) tuned for damping oscillations in two-area multi-machine system formulated as multi- objective optimization problem. The algorithms such as, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified Non-dominated Sorting Genetic Algorithm-II (MNSGA-II) are proposed for tuning the damping controller with speed deviation and control input as conflicting objectives. The proposed algorithm is implemented in the two area multi-machine system using MATLAB Simulink model, and the simulation results were obtained with respect to the characteristics of damping oscillations and the dynamic stability of power systems. The performance measures such as Integral Time Squared Error (ITSE) and Integral Squared Error (ISE) are considered as the objective functions. The results of the two proposed algorithm has been compared and the outcome shows that the MNSGA-II algorithm performs better compared to the NSGA-II algorithm

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Optimal power flow solution with current injection model of generalized interline power flow controller using ameliorated ant lion optimization

    Get PDF
    Optimal power flow (OPF) solutions with generalized interline power flow controller (GIPFC) devices play an imperative role in enhancing the power system’s performance. This paper used a novel ant lion optimization (ALO) algorithm which is amalgamated with Lévy flight operator, and an effectual algorithm is proposed named as, ameliorated ant lion optimization (AALO) algorithm. It is being implemented to solve single objective OPF problem with the latest flexible alternating current transmission system (FACTS) controller named as GIPFC. GIPFC can control a couple of transmission lines concurrently and it also helps to control the sending end voltage. In this paper, current injection modeling of GIPFC is being incorporated in conventional Newton-Raphson (NR) load flow to improve voltage of the buses and focuses on minimizing the considered objectives such as generation fuel cost, emissions, and total power losses by fulfilling equality, in-equality. For optimal allocation of GIPFC, a novel Lehmann-Symanzik-Zimmermann (LSZ) approach is considered. The proposed algorithm is validated on single benchmark test functions such as Sphere, Rastrigin function then the proposed algorithm with GIPFC has been testified on standard IEEE-30 bus system

    Applications of Genetic Algorithm and Its Variants in Rail Vehicle Systems: A Bibliometric Analysis and Comprehensive Review

    Get PDF
    Railway systems are time-varying and complex systems with nonlinear behaviors that require effective optimization techniques to achieve optimal performance. Evolutionary algorithms methods have emerged as a popular optimization technique in recent years due to their ability to handle complex, multi-objective issues of such systems. In this context, genetic algorithm (GA) as one of the powerful optimization techniques has been extensively used in the railway sector, and applied to various problems such as scheduling, routing, forecasting, design, maintenance, and allocation. This paper presents a review of the applications of GAs and their variants in the railway domain together with bibliometric analysis. The paper covers highly cited and recent studies that have employed GAs in the railway sector and discuss the challenges and opportunities of using GAs in railway optimization problems. Meanwhile, the most popular hybrid GAs as the combination of GA and other evolutionary algorithms methods such as particle swarm optimization (PSO), ant colony optimization (ACO), neural network (NN), fuzzy-logic control, etc with their dedicated application in the railway domain are discussed too. More than 250 publications are listed and classified to provide a comprehensive analysis and road map for experts and researchers in the field helping them to identify research gaps and opportunities

    Evolutionary learning and global search for multi-optimal PID tuning rules

    Get PDF
    With the advances in microprocessor technology, control systems are widely seen not only in industry but now also in household appliances and consumer electronics. Among all control schemes developed so far, Proportional plus Integral plus Derivative (PID) control is the most widely adopted in practice. Today, more than 90% of industrial controllers have a built-in PID function. Their wide applications have stimulated and sustained the research and development of PID tuning techniques, patents, software packages and hardware modules. Due to parameter interaction and format variation, tuning a PID controller is not as straightforward as one would have anticipated. Therefore, designing speedy tuning rules should greatly reduce the burden on new installation and ‘time-to-market’ and should also enhance the competitive advantages of the PID system under offer. A multi-objective evolutionary algorithm (MOEA) would be an ideal candidate to conduct the learning and search for multi-objective PID tuning rules. A simple to implement MOEA, termed s-MOEA, is devised and compared with MOEAs developed elsewhere. Extensive study and analysis are performed on metrics for evaluating MOEA performance, so as to help with this comparison and development. As a result, a novel visualisation technique, termed “Distance and Distribution” (DD)” chart, is developed to overcome some of the limitations of existing metrics and visualisation techniques. The DD chart allows a user to view the comparison of multiple sets of high order non-dominated solutions in a two-dimensional space. The capability of DD chart is shown in the comparison process and it is shown to be a useful tool for gathering more in-depth information of an MOEA which is not possible in existing empirical studies. Truly multi-objective global PID tuning rules are then evolved as a result of interfacing the s-MOEA with closed-loop simulations under practical constraints. It takes into account multiple, and often conflicting, objectives such as steady-state accuracy and transient responsiveness against stability and overshoots, as well as tracking performance against load disturbance rejection. These evolved rules are compared against other tuning rules both offline on a set of well-recognised PID benchmark test systems and online on three laboratory systems of different dynamics and transport delays. The results show that the rules significantly outperform all existing tuning rules, with multi-criterion optimality. This is made possible as the evolved rules can cover a delay to time constant ratio from zero to infinity based on first-order plus delay plant models. For second-order plus delay plant models, they can also cover all possible dynamics found in practice
    corecore