125 research outputs found

    Soft computing for tool life prediction a manufacturing application of neural - fuzzy systems

    Get PDF
    Tooling technology is recognised as an element of vital importance within the manufacturing industry. Critical tooling decisions related to tool selection, tool life management, optimal determination of cutting conditions and on-line machining process monitoring and control are based on the existence of reliable detailed process models. Among the decisive factors of process planning and control activities, tool wear and tool life considerations hold a dominant role. Yet, both off-line tool life prediction, as well as real tune tool wear identification and prediction are still issues open to research. The main reason lies with the large number of factors, influencing tool wear, some of them being of stochastic nature. The inherent variability of workpiece materials, cutting tools and machine characteristics, further increases the uncertainty about the machining optimisation problem. In machining practice, tool life prediction is based on the availability of data provided from tool manufacturers, machining data handbooks or from the shop floor. This thesis recognises the need for a data-driven, flexible and yet simple approach in predicting tool life. Model building from sample data depends on the availability of a sufficiently rich cutting data set. Flexibility requires a tool-life model with high adaptation capacity. Simplicity calls for a solution with low complexity and easily interpretable by the user. A neural-fuzzy systems approach is adopted, which meets these targets and predicts tool life for a wide range of turning operations. A literature review has been carried out, covering areas such as tool wear and tool life, neural networks, frizzy sets theory and neural-fuzzy systems integration. Various sources of tool life data have been examined. It is concluded that a combined use of simulated data from existing tool life models and real life data is the best policy to follow. The neurofuzzy tool life model developed is constructed by employing neural network-like learning algorithms. The trained model stores the learned knowledge in the form of frizzy IF-THEN rules on its structure, thus featuring desired transparency. Low model complexity is ensured by employing an algorithm which constructs a rule base of reduced size from the available data. In addition, the flexibility of the developed model is demonstrated by the ease, speed and efficiency of its adaptation on the basis of new tool life data. The development of the neurofuzzy tool life model is based on the Fuzzy Logic Toolbox (vl.0) of MATLAB (v4.2cl), a dedicated tool which facilitates design and evaluation of fuzzy logic systems. Extensive results are presented, which demonstrate the neurofuzzy model predictive performance. The model can be directly employed within a process planning system, facilitating the optimisation of turning operations. Recommendations aremade for further enhancements towards this direction

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    A survey of AI in operations management from 2005 to 2009

    Get PDF
    Purpose: the use of AI for operations management, with its ability to evolve solutions, handle uncertainty and perform optimisation continues to be a major field of research. The growing body of publications over the last two decades means that it can be difficult to keep track of what has been done previously, what has worked, and what really needs to be addressed. Hence this paper presents a survey of the use of AI in operations management aimed at presenting the key research themes, trends and directions of research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the ten-year period 1995-2004. Like the previous survey, it uses Elsevier’s Science Direct database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus, the application categories adopted are: design; scheduling; process planning and control; and quality, maintenance and fault diagnosis. Research on utilising neural networks, case-based reasoning (CBR), fuzzy logic (FL), knowledge-Based systems (KBS), data mining, and hybrid AI in the four application areas are identified. Findings: the survey categorises over 1,400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: the trends for design and scheduling show a dramatic increase in the use of genetic algorithms since 2003 that reflect recognition of their success in these areas; there is a significant decline in research on use of KBS, reflecting their transition into practice; there is an increasing trend in the use of FL in quality, maintenance and fault diagnosis; and there are surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Design/methodology/approach: the paper builds upon our previous survey of this field which was carried out for the 10 year period 1995 to 2004 (Kobbacy et al. 2007). Like the previous survey, it uses the Elsevier’s ScienceDirect database as a source. The framework and methodology adopted for the survey is kept as similar as possible to enable continuity and comparison of trends. Thus the application categories adopted are: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Research on utilising neural networks, case based reasoning, fuzzy logic, knowledge based systems, data mining, and hybrid AI in the four application areas are identified. Findings: The survey categorises over 1400 papers, identifying the uses of AI in the four categories of operations management and concludes with an analysis of the trends, gaps and directions for future research. The findings include: (a) The trends for Design and Scheduling show a dramatic increase in the use of GAs since 2003-04 that reflect recognition of their success in these areas, (b) A significant decline in research on use of KBS, reflecting their transition into practice, (c) an increasing trend in the use of fuzzy logic in Quality, Maintenance and Fault Diagnosis, (d) surprising gaps in the use of CBR and hybrid methods in operations management that offer opportunities for future research. Originality/value: This is the largest and most comprehensive study to classify research on the use of AI in operations management to date. The survey and trends identified provide a useful reference point and directions for future research

    Productivity analysis of horizontal directional drilling

    Get PDF
    The National Research Council of Canada reported that rehabilitation of municipal water systems between 1997 and 2012 would cost $28 billion (NRC, 2004). With the rapid increase of new installations, the need for replacement and repair of pipe utilities and also the demand for trenchless excavation methods, increase. This must be done with minimum disruption to public. One alternative to reduce disruption is to use horizontal directional drilling (HDD) for new pipe installation scenarios. Consequently, contractors, engineers, and decision makers are facing continuous challenges regarding to estimation of execution time and cost of new pipe installations, while using HDD. This is because productivity prediction and consequently the cost estimation of HDD involves a large number of objective and subjective factors that need to be considered. It is well known that prediction of both productivity and cost is an important process in establishing and employing management strategies for a construction operation. This calls for the need of developing a dedicated HDD productivity model that meets present day requirements of this area of construction industry. There are two main objectives of the current research. The first objective is to identify the factors that affect productivity of HDD operations. The second objective is to develop a productivity prediction model for different soil conditions. To achieve these two objectives a thorough literature review was carried out. Thereafter, data on potential factors on productivity were collected from HDD experts across North America and abroad. Following data collection, the current research identified managerial, mechanical, environmental and pipe physical conditions parameters operating in three types of soils: clay, rock and sandy soils. Prior to model development, Analytical Hierarchy Process (AHP) technique was used to classify and rank these factors according to their relative importance. A neurofuzzy (NF) approach is employed to develop HDD productivity prediction model for pipe installation. The merits of this approach are that it decreases uncertainties in results, addresses non-linear relationships and deals well with imprecise and linguistic data. The following eight factors were finally selected as inputs of the model to be developed: operator/ crew skills, soil type, drilling rig capabilities, machine conditions, unseen buried obstacles, pipe diameter, pipe length and site weather and safety conditions. The model is validated using actual project data. The developed NF model showed average validation percent of 94.7%, 82.3% and 86.7%, for clay, rock and sand, respectively. The model is also used to produce productivity curves (production rate vs. influencing factors) for each soil type. Finally, an automated user-friendly productivity prediction tool (HDD-PP) based on present NF model is developed to predict HDD productivity. This tool is coded in MatLab ® language using the graphical user interface tool (GUI). The tool was used to test a case study. It was proved to be helpful for contractors, consultants and HDD professionals in predicting execution time and to estimate cost of HDD projects during the preconstruction phase in the environment of imprecise and noisy inputs

    A comprehensive framework to efficiently plan short and long-term investments in water supply and sewer networks

    Get PDF
    Water supply and sewer networks are critical infrastructures that provide a basic service to society. However, these systems constantly age and degrade over time. In addition, since network infrastructures are so extensive in length, they require a significant investment in maintenance tasks. Hence, within the context of infrastructure asset management (IAM), accurately defining the most efficient investment planning possible is essential to ensure their long-term sustainability. This paper presents an original five-step comprehensive framework to successfully implement an infrastructure asset management strategy and plan long-term investments. Moreover, this methodology integrates innovative and relevant operational and convenience factors that, while provide the problem both with realism and practicality, have not been addressed so far. To illustrate the usefulness and applicability of this methodology, the case study of a large water company in Spain is presented

    Predicting Project Success in Residential Building Projects (RBPs) using Artificial Neural Networks (ANNs)

    Get PDF
    Due to the urban population’s growth and increasing demand for the renewal of old houses, the successful completion of Residential Building Projects (RBPs) has great socioeconomic importance. This study aims to propose a framework to predict the success of RBPs in the construction phase. Therefore, a 3-step method was applied: (1) Identifying and ranking Critical Success Factors (CSFs) involving in RBPs using the Delphi method, (2) Identifying and selecting success criteria and defining the Project Success Index (PSI), and (3) Developing an ANN model to predict the success of RBPs according to the status of CSFs during the construction phase. The model was trained and tested using the data extracted from 121 RBPs in Tehran. The main findings of this study were a prioritized list of most influential success criteria and an efficient ANN model as a Decision Support System (DSS) in RBPs to monitor the projects in advance and take necessary corrective actions. Compared with previous studies on the success assessment of projects, this study is more focused on providing an applicable method for predicting the success of RBPs. Doi: 10.28991/cej-2020-03091612 Full Text: PD

    Risk-Based Optimal Scheduling for the Predictive Maintenance of Railway Infrastructure

    Get PDF
    In this thesis a risk-based decision support system to schedule the predictive maintenance activities, is proposed. The model deals with the maintenance planning of a railway infrastructure in which the due-dates are defined via failure risk analysis.The novelty of the approach consists of the risk concept introduction in railway maintenance scheduling, according to ISO 55000 guidelines, thus implying that the maintenance priorities are based on asset criticality, determined taking into account the relevant failure probability, related to asset degradation conditions, and the consequent damages
    corecore