220 research outputs found

    Assembly sequence planning using hybrid binary particle swarm optimization

    Get PDF
    Assembly Sequence Planning (ASP) is known as a large-scale, timeconsuming combinatorial problem. Therefore time is the main factor in production planning. Recently, ASP in production planning had been studied widely especially to minimize the time and consequently reduce the cost. The first objective of this research is to formulate and analyse a mathematical model of the ASP problem. The second objective is to minimize the time of the ASP problem and hence reduce the product cost. A case study of a product consists of 19 components have been used in this research, and the fitness function of the problem had been calculated using Binary Particle Swarm Optimization (BPSO), and hybrid algorithm of BPSO and Differential Evolution (DE). The novel algorithm of BPSODE has been assessed with performance-evaluated criteria (performance measure). The algorithm has been validated using 8 comprehensive benchmark problems from the literature. The results show that the BPSO algorithm has an improved performance and can reduce further the time of assembly of the 19 parts of the ASP compared to the Simulated Annealing and Genetic Algorithm. The novel hybrid BPSODE algorithm shows a superior performance when assessed via performance-evaluated criteria compared to BPSO. The BPSODE algorithm also demonstrated a good generation of the recorded optimal value for the 8 standard benchmark problems

    Evolutionary framework with reinforcement learning-based mutation adaptation

    Get PDF
    Although several multi-operator and multi-method approaches for solving optimization problems have been proposed, their performances are not consistent for a wide range of optimization problems. Also, the task of ensuring the appropriate selection of algorithms and operators may be inefficient since their designs are undertaken mainly through trial and error. This research proposes an improved optimization framework that uses the benefits of multiple algorithms, namely, a multi-operator differential evolution algorithm and a co-variance matrix adaptation evolution strategy. In the former, reinforcement learning is used to automatically choose the best differential evolution operator. To judge the performance of the proposed framework, three benchmark sets of bound-constrained optimization problems (73 problems) with 10, 30 and 50 dimensions are solved. Further, the proposed algorithm has been tested by solving optimization problems with 100 dimensions taken from CEC2014 and CEC2017 benchmark problems. A real-world application data set has also been solved. Several experiments are designed to analyze the effects of different components of the proposed framework, with the best variant compared with a number of state-of-the-art algorithms. The experimental results show that the proposed algorithm is able to outperform all the others considered.</p

    A comprehensive review of swarm optimization algorithms

    Get PDF
    Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained, and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book

    Differential Evolution in Wireless Communications: A Review

    Get PDF
    Differential Evolution (DE) is an evolutionary computational method inspired by the biological processes of evolution and mutation. DE has been applied in numerous scientific fields. The paper presents a literature review of DE and its application in wireless communication. The detailed history, characteristics, strengths, variants and weaknesses of DE were presented. Seven broad areas were identified as different domains of application of DE in wireless communications. It was observed that coverage area maximisation and energy consumption minimisation are the two major areas where DE is applied. Others areas are quality of service, updating mechanism where candidate positions learn from a large diversified search region, security and related field applications. Problems in wireless communications are often modelled as multiobjective optimisation which can easily be tackled by the use of DE or hybrid of DE with other algorithms. Different research areas can be explored and DE will continue to be utilized in this contex

    Navigational Strategies for Control of Underwater Robot using AI based Algorithms

    Get PDF
    Autonomous underwater robots have become indispensable marine tools to perform various tedious and risky oceanic tasks of military, scientific, civil as well as commercial purposes. To execute hazardous naval tasks successfully, underwater robot needs an intelligent controller to manoeuver from one point to another within unknown or partially known three-dimensional environment. This dissertation has proposed and implemented various AI based control strategies for underwater robot navigation. Adaptive versions of neuro-fuzzy network and several stochastic evolutionary algorithms have been employed here to avoid obstacles or to escape from dead end situations while tracing near optimal path from initial point to destination of an impulsive underwater scenario. A proper balance between path optimization and collision avoidance has been considered as major aspects for evaluating performances of proposed navigational strategies of underwater robot. Online sensory information about position and orientation of both target and nearest obstacles with respect to the robot’s current position have been considered as inputs for path planners. To validate the feasibility of proposed control algorithms, numerous simulations have been executed within MATLAB based simulation environment where obstacles of different shapes and sizes are distributed in a chaotic manner. Simulation results have been verified by performing real time experiments of robot in underwater environment. Comparisons with other available underwater navigation approaches have also been accomplished for authentication purpose. Extensive simulation and experimental studies have ensured the obstacle avoidance and path optimization abilities of proposed AI based navigational strategies during motion of underwater robot. Moreover, a comparative study has been performed on navigational performances of proposed path planning approaches regarding path length and travel time to find out most efficient technique for navigation within an impulsive underwater environment
    corecore