152,230 research outputs found

    Predicting Skin Permeability by means of Computational Approaches : Reliability and Caveats in Pharmaceutical Studies

    Get PDF
    © 2019 American Chemical Society.The skin is the main barrier between the internal body environment and the external one. The characteristics of this barrier and its properties are able to modify and affect drug delivery and chemical toxicity parameters. Therefore, it is not surprising that permeability of many different compounds has been measured through several in vitro and in vivo techniques. Moreover, many different in silico approaches have been used to identify the correlation between the structure of the permeants and their permeability, to reproduce the skin behavior, and to predict the ability of specific chemicals to permeate this barrier. A significant number of issues, like interlaboratory variability, experimental conditions, data set building rationales, and skin site of origin and hydration, still prevent us from obtaining a definitive predictive skin permeability model. This review wants to show the main advances and the principal approaches in computational methods used to predict this property, to enlighten the main issues that have arisen, and to address the challenges to develop in future research.Peer reviewedFinal Accepted Versio

    Inductive queries for a drug designing robot scientist

    Get PDF
    It is increasingly clear that machine learning algorithms need to be integrated in an iterative scientific discovery loop, in which data is queried repeatedly by means of inductive queries and where the computer provides guidance to the experiments that are being performed. In this chapter, we summarise several key challenges in achieving this integration of machine learning and data mining algorithms in methods for the discovery of Quantitative Structure Activity Relationships (QSARs). We introduce the concept of a robot scientist, in which all steps of the discovery process are automated; we discuss the representation of molecular data such that knowledge discovery tools can analyse it, and we discuss the adaptation of machine learning and data mining algorithms to guide QSAR experiments

    Overview: Computer vision and machine learning for microstructural characterization and analysis

    Full text link
    The characterization and analysis of microstructure is the foundation of microstructural science, connecting the materials structure to its composition, process history, and properties. Microstructural quantification traditionally involves a human deciding a priori what to measure and then devising a purpose-built method for doing so. However, recent advances in data science, including computer vision (CV) and machine learning (ML) offer new approaches to extracting information from microstructural images. This overview surveys CV approaches to numerically encode the visual information contained in a microstructural image, which then provides input to supervised or unsupervised ML algorithms that find associations and trends in the high-dimensional image representation. CV/ML systems for microstructural characterization and analysis span the taxonomy of image analysis tasks, including image classification, semantic segmentation, object detection, and instance segmentation. These tools enable new approaches to microstructural analysis, including the development of new, rich visual metrics and the discovery of processing-microstructure-property relationships.Comment: submitted to Materials and Metallurgical Transactions

    Knowledge data discovery and data mining in a design environment

    Get PDF
    Designers, in the process of satisfying design requirements, generally encounter difficulties in, firstly, understanding the problem and secondly, finding a solution [Cross 1998]. Often the process of understanding the problem and developing a feasible solution are developed simultaneously by proposing a solution to gauge the extent to which the solution satisfies the specific requirements. Support for future design activities has long been recognised to exist in the form of past design cases, however the varying degrees of similarity and dissimilarity found between previous and current design requirements and solutions has restrained the effectiveness of utilising past design solutions. The knowledge embedded within past designs provides a source of experience with the potential to be utilised in future developments provided that the ability to structure and manipulate that knowledgecan be made a reality. The importance of providing the ability to manipulate past design knowledge, allows the ranging viewpoints experienced by a designer, during a design process, to be reflected and supported. Data Mining systems are gaining acceptance in several domains but to date remain largely unrecognised in terms of the potential to support design activities. It is the focus of this paper to introduce the functionality possessed within the realm of Data Mining tools, and to evaluate the level of support that may be achieved in manipulating and utilising experiential knowledge to satisfy designers' ranging perspectives throughout a product's development
    • …
    corecore